Many rivers across the world have experienced a significant streamflow reduction over the last decades. Drivers of the observed streamflow changes are multiple, including climate change (CC), land use and land cover changes (LULCC), water transfers and river impoundment. Many of these drivers inter-act simultaneously, making it difficult to discern the impact of each driver individually. In this study we isolate the effects of LULCC on the observed streamflow reduction in the Upper Turia basin (east Spain) during the period 1973-2008. Regression models of annual streamflow are fitted with climatic variables and also additional time variant drivers like LULCC. The ecohydrological model SWAT is used to study the magnitude and sign of streamflow change when LULCC occurs. Our results show that LULCC does play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting increasing evapotranspiration and streamflow reduction. In fact, LULCC and CC have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2014.07.041 | DOI Listing |
Heliyon
November 2024
Department of Land Resources Management and Environmental Protection, Mekelle University, P.O.Box 231, Mekelle, Ethiopia.
The uncertainty in climate change and high water demand pose pressure on the natural water resources supply. Not only does this require better understanding but also a call for immediate interventions, mitigation and adaptive measures. This study evaluates catchment water resources in the Luwombwa sub-catchment in Zambia through statistical analysis in the downscaling of past, present and future climatic variables from the CMIP6 climatic model.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Environmental Health Sciences, University at Albany, State University of New York, United States.
J Environ Manage
November 2024
Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW, 2052, Australia.
Freshwater ecosystems, including rivers and floodplain wetlands, face severe stress from unsustainable water resources development, with climate change exerting further pressure. This study compares the relative effects of river regulation and projected climate change on river flows to the semi-arid Lowbidgee Floodplain (3250 km), the largest wetland ecosystem on the heavily regulated Murrumbidgee River, Australia's second longest river, within the Murray-Darling Basin. We modelled annual natural streamflow in the lower Murrumbidgee River before major dam constructions and water diversions (1890-1927), linking river flows to runoff from the upper Murrumbidgee catchment.
View Article and Find Full Text PDFEcol Appl
October 2024
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada.
Defoliation by eastern spruce budworm is one of the most important natural disturbances in Canadian boreal and hemi-boreal forests with annual area affected surpassing that of fire and harvest combined, and its impacts are projected to increase in frequency, severity, and range under future climate scenarios. Deciding on an active management strategy to control outbreaks and minimize broader economic, ecological, and social impacts is becoming increasingly important. These strategies differ in the degree to which defoliation is suppressed, but little is known about the downstream consequences of defoliation and, thus, the implications of management.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2024
Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!