Fructose-2,6-bisphosphate (F2,6BP) is a shunt product of glycolysis that allosterically activates 6-phosphofructo-1-kinase (PFK-1) resulting in increased glucose uptake and glycolytic flux to lactate. The F2,6BP concentration is dictated by four bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) with distinct kinase:phosphatase activities. PFKFB4 is over-expressed in human cancers, induced by hypoxia and required for survival and growth of several cancer cell lines. Although PFKFB4 appears to be a rational target for anti-neoplastic drug development, it is not clear whether its kinase or phosphatase activity is required for cancer cell survival. In this study, we demonstrate that recombinant human PFKFB4 kinase activity is 4.3-fold greater than its phosphatase activity, siRNA and genomic deletion of PFKFB4 decrease F2,6BP, PFKFB4 over-expression increases F2,6BP and selective PFKFB4 inhibition in vivo markedly reduces F2,6BP, glucose uptake and ATP. Last, we find that PFKFB4 is required for cancer cell survival during the metabolic response to hypoxia, presumably to enable glycolytic production of ATP when the electron transport chain is not fully operational. Taken together, our data indicate that the PFKFB4 expressed in multiple transformed cells and tumors functions to synthesize F2,6BP. We predict that pharmacological disruption of the PFKFB4 kinase domain may have clinical utility for the treatment of human cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196155 | PMC |
http://dx.doi.org/10.18632/oncotarget.2213 | DOI Listing |
JAMA Netw Open
January 2025
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland.
Importance: Sensitivity to environmental stress and adversity may influence lung cancer risk, highlighting a critical link between psychosocial factors and cancer etiology.
Objective: To evaluate whether genetically estimated sensitivity to environmental stress and adversity is associated with lung cancer risk.
Design, Setting, And Participants: Data were obtained from a genome-wide association study identifying 37 independent genetic variants strongly associated with sensitivity to environmental stress and adversity and a cross-ancestry genome-wide meta-analysis from the International Lung Cancer Consortium.
J Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Barts Cancer Institute, Queen Mary University of London;
Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada.
The immune checkpoint inhibitor, anti-programmed death protein-1 (anti-PD-1), enhances adaptive immunity to kill tumor cells, and the oncolytic virus (OV) triggers innate immunity to clear the infected tumor cells. We create a mathematical model to investigate how the interaction between adaptive and innate immunities under OV and anti-PD-1 affects tumor reduction. For different immunity strength, we create the corresponding virtual baseline patients and cohort patients to decipher the major factors determining the treatment outcome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!