In order to develop new biorational pesticides and clarify the potential structural factors needed for the biological activity of celangulin-V analogues, thirty novel nitrogenous derivatives were designed and synthesized. The single crystal structure of celangulin-V is reported for the first time and provides a more accurate structure than that previously reported. The structures of all the new derivatives were confirmed by either NMR or ESI-MSn analysis. Insecticidal activities of these compounds were tested against the third-instar larvae of Mythimna separata. One derivative (1-6) showed higher insecticidal activity than celangulin-V, with a KD50 of 231.2 microg.g(-1), while two compounds (2-13 and 2-14) exhibited lower insecticidal activities; the others revealed no activity at a concentration of 20 mg mL(-1). The results support the view that celangulin-V has the potential to be a lead structure of semi-synthetic green insecticides.
Download full-text PDF |
Source |
---|
Pest Manag Sci
January 2025
State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China.
Background: Increasing the diversity of lead compounds has been shown to enhance the efficacy of diamide insecticides. Fifty novel compounds were precisely designed and synthesized utilizing fragment-based assembly and virtual screening coupling.
Results: The median lethal concentration (LC) values of compounds X-30 and X-40 against Mythimna separata were 0.
Agonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Syngenta, Bioscience, Jealott's Hill Research Centre.
Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).
View Article and Find Full Text PDFIntroduction Acute poisoning in children is still a global health concern that necessitates visiting the emergency department that might associated with morbidity and mortality. It has an impact on social, economic, and health issues, particularly for children under five who account for the majority of poisonings worldwide. Poisoning can result in mild cases, serious complications, or even death; oral ingestion is the most common way that poisoning occurs in children.
View Article and Find Full Text PDFTrop Biomed
December 2024
Department of Entomology and Plant Pathology, Khon Kaen University, Thailand Mittapap Road, Khon Kaen, Khon Kaen, 40002, Thailand.
This research aimed to find indigenous plants and suitable solvents to extract substances with the capacity to suppress the immature stages of house fly populations in animal farms and urban areas. Seven native Thai plants were tested: Alstonia scholaris (L.) R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!