In a fluorescence polarization screen for the MYC-MAX interaction, we have identified a novel small-molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM, as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC-MAX complex formation in the cell, as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-amplified human cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151726PMC
http://dx.doi.org/10.1073/pnas.1319488111DOI Listing

Publication Analysis

Top Keywords

inhibitor myc
8
kröhnke pyridine
8
pyridine library
8
kj-pyr-9
6
myc identified
4
identified kröhnke
4
library fluorescence
4
fluorescence polarization
4
polarization screen
4
screen myc-max
4

Similar Publications

FMS-like tyrosine kinase-3 (FLT3), a class 3 receptor tyrosine kinase, can be activated by mutations of internal tandem duplication (FLT3-ITD) or point mutations in the tyrosine kinase domain (FLT3-TKD), leading to constitutive activation of downstream signaling cascades, including the JAK/STAT5, PI3K/AKT/mTOR and RAS/MAPK pathways, which promote the progression of leukemic cells. Despite the initial promise of FLT3 inhibitors, the discouraging outcomes in the treatment of FLT3-ITD-positive acute myeloid leukemia (AML) promote the pursuit of more potent and enduring therapeutic approaches. The histone acetyltransferase complex comprising the E1A binding protein P300 and its paralog CREB-binding protein (p300/CBP) is a promising therapeutic target, but the development of effective p300/CBP inhibitors faces challenges due to inherent resistance and low efficacy, often exacerbated by the absence of reliable clinical biomarkers for patient stratification.

View Article and Find Full Text PDF

Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630.

Invest New Drugs

January 2025

UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.

Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.

Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.

View Article and Find Full Text PDF

BET inhibition induces GDH1-dependent glutamine metabolic remodeling and vulnerability in liver cancer.

Life Metab

August 2024

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.

Bromodomain and extra-terminal domain (BET) proteins, which function partly through MYC proto-oncogene (MYC), are critical epigenetic readers and emerging therapeutic targets in cancer. Whether and how BET inhibition simultaneously induces metabolic remodeling in cancer cells remains unclear. Here we find that even transient BET inhibition by JQ-1 and other pan-BET inhibitors (pan-BETis) blunts liver cancer cell proliferation and tumor growth.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

A single-cell sequencing-based analysis of a 13-year-old with maxillary sinus NUT carcinoma.

Oral Oncol

January 2025

Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine Chongqing University, Chongqing University, Shapingba District, Chongqing 400030, China. Electronic address:

NUT carcinoma is a rare and highly aggressive malignancy, predominantly affecting adolescents and young adults. This tumor demonstrates rapid progression, resistance to conventional anti-cancer treatments, and an extremely poor prognosis. Currently, research on NUT carcinoma is limited, and effective treatment options remain scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!