Ischemic stroke and Alzheimer's disease (AD), despite being distinct disease entities, share numerous pathophysiological mechanisms such as those mediated by inflammation, immune exhaustion, and neurovascular unit compromise. An important shared mechanistic link is acute and chronic changes in protein kinase C (PKC) activity. PKC isoforms have widespread functions important for memory, blood-brain barrier maintenance, and injury repair that change as the body ages. Disease states accelerate PKC functional modifications. Mutated forms of PKC can contribute to neurodegeneration and cognitive decline. In some cases the PKC isoforms are still functional but are not successfully translocated to appropriate locations within the cell. The deficits in proper PKC translocation worsen stroke outcome and amyloid-β toxicity. Cross talk between the innate immune system and PKC pathways contribute to the vascular status within the aging brain. Unfortunately, comorbidities such as diabetes, obesity, and hypertension disrupt normal communication between the two systems. The focus of this review is to highlight what is known about PKC function, how isoforms of PKC change with age, and what additional alterations are consequences of stroke and AD. The goal is to highlight future therapeutic targets that can be applied to both the treatment and prevention of neurologic disease. Although the pathology of ischemic stroke and AD are different, the similarity in PKC responses warrants further investigation, especially as PKC-dependent events may serve as an important connection linking age-related brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446718PMC
http://dx.doi.org/10.3233/JAD-141422DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
12
pkc
10
alzheimer's disease
8
protein kinase
8
pkc isoforms
8
disease
5
stroke
5
common mechanisms
4
mechanisms alzheimer's
4
disease ischemic
4

Similar Publications

Safety and efficacy of tirofiban in the endovascular treatment of intracranial aneurysms: a systematic evaluation and meta-analysis.

Neurosurg Rev

January 2025

Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.

Patients with intracranial aneurysms (IA) undergoing endovascular treatment face varying risks and benefits when tirofiban is used for thromboprophylaxis during surgery. Currently, there is a lack of high-level evidence summarizing this information. This study aims to conduct a systematic review and meta-analysis to evaluate the efficacy and safety of tirofiban during endovascular treatment of IA.

View Article and Find Full Text PDF

Background: Automated machine learning (ML)-based large vessel occlusion (LVO) detection algorithms have been shown to improve in-hospital workflow metrics including door-to-groin time (DTG). The degree to which care team engagement and interaction are required for these benefits remains incompletely characterized.

Methods: This analysis was conducted as a pre-planned post-hoc analysis of a randomized prospective clinical trial.

View Article and Find Full Text PDF

Effect of SARS-CoV2 Infection on Endovascular Thrombectomy Outcomes - Data from the Florida Stroke Registry.

AJNR Am J Neuroradiol

January 2025

From the University of Miami Department of Neurology (H.B.F., I.R., R.Y., A.A., M.S., Y.H., A.A., C.M.G., V.J.D.B., R.M.S., T.R., H.G., J.G.R., N.A.), Miami, FL, USA; University of South Florida Department of Neurology (D.Z.R. A.J.), Tampa, FL, USA.

Background And Purpose: Endovascular thrombectomy outcomes are impacted by changes in stroke systems of care. During the pandemic, SARS-CoV2 positive status had major implications on hospital arrival and treatment models of non-COVID related hospital admissions. Using the Florida Stroke Registry, we compared the rates of in-hospital death and discharge outcomes of patients treated with endovascular thrombectomy who tested positive for SARS-CoV2 infection during their hospitalization.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Introduction: Our previous work demonstrated that evaluating large ischemic cores using the apparent diffusion coefficient (ADC) could predict EVT outcomes, with the most frequent ADC (peak ADC) ≥520×10 mm/s associated with better clinical results. Since the degree of ADC reduction reflects the severity of ischemic stress, this study aimed to assess the utility of an ADC color map in visualizing this stress.

Patients And Methods: This retrospective cohort study included consecutive patients with a low Alberta Stroke Program Early Computed Tomography Score (ASPECTS) using diffusion-weighted imaging (DWI) who underwent successful EVT recanalization between April 2014 and March 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!