WUEi (intrinsic water use efficiency) is a complex (multi)-trait, that depends on several physiological processes, driving plant productivity and its relation with a changing environment. Climatic change predictions estimate increases in temperature and drought in the semi-arid regions, rendering improved water use efficiency is a mandatory objective to maintain the current global food supply. The aims of this review were (i) to identify through a meta-analysis the leaf traits mostly related to intrinsic water use efficiency (WUEi, the ratio between A - net photosynthesis and gs - stomatal conductance), based on a newly compiled dataset covering more than 200 species/varieties and 106 genus of C3 plants (ii) to describe the main potential targets for WUEi improvement via biotechnological manipulations and (iii) to introduce emergent and innovative technologies including UAVs (Unmanned Aerial Vehicles) to scale up levels from leaf to whole plant water status. We confirmed that increases in gm/gs and Vcmax/gs ratios are systematically related with increases in WUEi maintained across species, habitats, and environmental conditions. Other emergent opportunities to improve WUEi are described such as the relationship between photosynthesis and respiration and their link with metabolomics. Finally, we outline our hypothesis that we are observing the advent of a "smart" agriculture, wherein new technologies, such as UAVs equipped with remote sensors will rapidly facilitate an efficient water use regulating the irrigation schedule and determination, under field conditions, of cultivars with improved water use efficiency. We, therefore, conclude that the multi-disciplinary challenge toward WUE has only just begun.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2014.04.007 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computer Engineering, Marwadi University, Rajkot, 360003, India.
The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.
View Article and Find Full Text PDFSci Rep
December 2024
Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.
View Article and Find Full Text PDFNat Commun
December 2024
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.
View Article and Find Full Text PDFSci Rep
December 2024
Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-8, Santa Maria, RS, 97105-900, Brazil.
This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!