Background: Total serum transforming growth factor-beta 1 (tsTGF-β1) is increased in patients with Marfan syndrome (MFS), but it has not been assessed in thoracic aortic aneurysm and dissection (TAAD), Loeys-Dietz syndrome (LDS), and bicuspid aortic valve disease (BAVD).

Hypothesis: tsTGF-β1 is increased in genetic aortic syndromes including TAAD, LDS, MFS, and BAVD.

Methods: We measured tsTGF-β1 and performed sequencing of the genes FBN1, TGFBR1, and TGFBR2 in 317 consecutive patients with suspected or known genetic aortic syndrome (167 men, 150 women; mean age 43 ± 14 years). TAAD was diagnosed in 20, LDS in 20, MFS in 128, and BAVD in 30 patients, and genetic aortic syndrome was excluded in 119 patients.

Results: Elevated tsTGF-β1 levels were associated with causative gene mutations (P = 0.008), genetic aortic syndrome (P = 0.009), and sporadic occurrence of genetic aortic syndrome (P = 0.048), whereas only genetic aortic syndrome qualified as an independent predictor of tsTGF-β1 (P = 0.001). The tsTGF-β1 levels were elevated in FBN1 and NOTCH1 mutations vs patients without mutations (both P = 0.004), and in NOTCH1 mutations vs ACTA2/MYH11 mutations (P = 0.015). Similarly, tsTGF-β1 levels were elevated in MFS (P = 0.003) and in BAVD (P = 0.006) vs patients without genetic aortic syndrome. In contrast to specific clinical features of MFS, FBN1 in-frame mutations (P = 0.019) were associated with increased tsTGF-β1 levels.

Conclusions: tsTGF-β1 is elevated in the entire spectrum of genetic aortic syndromes. However, gradual differences in the increases of tsTGF-β1 levels may mirror different degrees of alteration of tsTGF-β1 signaling in different genetic aortic syndromes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649456PMC
http://dx.doi.org/10.1002/clc.22320DOI Listing

Publication Analysis

Top Keywords

genetic aortic
40
aortic syndrome
24
aortic syndromes
16
tstgf-β1 levels
16
aortic
12
tstgf-β1
11
genetic
10
total serum
8
serum transforming
8
transforming growth
8

Similar Publications

Cardiovascular disease (CVD) is a major driver of mortality and declining health worldwide. Cardiovascular diseases (CVD) is the most common cause of morbidity and mortality globally. Although dyslipidemia, smoking, diabetes, hypertension and obesity are some well-known causes of CVD, the overlapping genetic pathways between other diseases and those affecting cardiovascular health have been overlooked.

View Article and Find Full Text PDF

Role of miRNAs in Regulating Ascending Aortic Dilation in Bicuspid Aortic Valve Patients Operated for Aortic Stenosis.

Int J Mol Sci

January 2025

Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico.

Deregulation of micro-RNAs (miRNAs) may contribute to mechanisms of injury in the bicuspid aortic valve (BAV). Our objective was to investigate the expression of miRNAs in aortic tissue from patients who underwent aortic valve replacement for aortic stenosis and its relationship with aortic dilatation. The study included 78 patients, 40 with bicuspid aortic valve (BAV) and 38 with tricuspid aortic valve (TAV).

View Article and Find Full Text PDF

We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a genetic disorder affecting connective tissue, often leading to cardiovascular complications such as aortic aneurysms and mitral valve prolapse. Cardiovascular multimodality imaging plays a crucial role in the diagnosis, monitoring, and management of MFS patients. This review explores the advancements in echocardiography, cardiovascular magnetic resonance (CMR), cardiac computed tomography (CCT), and nuclear medicine techniques in MFS.

View Article and Find Full Text PDF

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!