It is difficult to determine whether the measured rate constant for reaction of atomic hydrogen with formic acid reported in Part 1 reflects the H atom quantum diffusion rate or the rate constant for the tunneling reaction step. In Part 2 of this series, we present kinetic studies of the postphotolysis H atom reactions with deuterated formic acid (DCOOD) to address this ambiguity. Short duration 193 nm in situ photolysis of DCOOD trapped in solid parahydrogen results in partial depletion of the DCOOD precursor and photoproduction of primarily CO, CO2, DOCO, HCO and mobile H atoms. At 1.9 K we observe post-irradiation growth in the concentrations of DOCO and HCO that can be explained by H atom tunneling reactions with DCOOD and CO, respectively. Conducting experiments with different deuterium isotopomers of formic acid (DCOOD, DCOOH, HCOOD and HCOOH) provides strong circumstantial evidence the reaction involves H atom abstraction from the alkyl group of formic acid. Further, the anomalous temperature dependence measured for the H + HCOOH reaction in Part 1 is also observed for the analogous reactions with deuterated formic acid. The rate constants extracted for H atom reactions with DCOOD and HCOOH are equivalent to within experimental uncertainty. This lack of a kinetic isotope effect in the measured rate constant is interpreted as evidence the reactions are diffusion limited; the measured rate constant reflects the H atom diffusion rate and not the tunneling reaction rate. Whether or not H atom reactions with chemical species in solid parahydrogen are diffusion limited is one of the outstanding questions in this field, and this work makes significant strides toward showing the reaction kinetics with formic acid are diffusion limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp502469p | DOI Listing |
J Biosci Bioeng
December 2024
Division of Engineering and Agriculture, Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
Bacteria and fungi that are resistant to formaldehyde (FA) are expected to use biochemical processing to degrade FA in wastewater. Pseudomonas sp. No.
View Article and Find Full Text PDFMed J Armed Forces India
December 2024
Associate Professor (Forensic Medicine), Agartala Government Medical College, Tripura, India.
Background: Rubber latex processing acid poisoning is a frequently encountered phenomenon in Tripura. Formic acid is the preferred choice for coagulating rubber latex in rubber sheet manufacturing units. The objective of this study aimed to assess the epidemiological profile of poisoning deaths by rubber processing acid and to record their autopsy findings.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!