Chironomus Meigen (Diptera, Chironomidae) larvae are usually the largest sediment-burrowing chironomids, and as such often constitute a major part of the freshwater infaunal biomass. However, use of this genus in ecological, environmental and paleoecological studies is hampered by the fact that Chironomus larvae are difficult to identify to species because the larvae of many species are morphologically similar. We used a combination of morphological, cytological and genetic techniques to distinguish Chironomus larvae collected from 31 water bodies located in eastern Canada, producing 17 distinguishable groupings. These groups of larvae were ultimately identified as belonging to 14 known species (C. anthracinus, C. bifurcatus, C. cucini, C. decorus-group sp. 2, C. dilutus, C. entis, C. frommeri, C. harpi, C. maturus, C. nr. atroviridis (sp. 2i), C. ochreatus, C. plumosus, C. staegeri and C. 'tigris') and three other species that remain unidentified (C. sp. NAI-III). No single approach served to delimit and identify larvae of all 17 Chironomus species that we collected. Although we expected that morphological criteria alone would be insufficient, our results suggest that DNA barcoding, using either the mitochondrial cox1 or the nuclear gb2β gene, was also inadequate for separating some Chironomus species. Thus we suggest that multiple approaches will often be needed to correctly identify Chironomus larvae to species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11646/zootaxa.3741.4.1 | DOI Listing |
Sci Rep
December 2024
Department of Hydrobiology, Kazimierz Wielki University, 85-090, Bydgoszcz, Poland.
Shallow lakes, including those located at the border between Europe and Asia (Kazakhstan), have become very prone to increasing salinity because of climate change. Most of the study area is in one of the fastest-warming parts of the globe. Our research, conducted in four lakes varying in water salinity level and located in western Kazakhstan in the steppe, semi-desert, and desert zones, can be used to predict biodiversity as indicators of the natural potential of ecosystems.
View Article and Find Full Text PDFBMC Genom Data
December 2024
Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang City, 438000, Hubei, China.
Smittia aterrima (Meigen, 1818) and Smittia pratorum (Goetghebuer, 1927) are important indicator insects for aquatic environments, showing extensive tolerance to the environment. However, the genome-wide phylogenetic relationships and characteristics of the detoxification mechanisms in S. aterrima and S.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
Although sediments are important reservoirs of plastics, most of the ecotoxicological studies on these contaminants are focused on the organisms living in the water column, while only a smaller number of evidence concerns the plastic impact on benthic species. Therefore, this study compared the multigenerational effects on the sediment-dwelling midge Chironomus riparius exposed to both virgin polystyrene microbeads (22,400-224,000 plastics/kg sediments dry weight), and plastic mixtures (40-420 plastics/kg dry weight) collected from four of the main tributaries of Po River (Ticino, Adda, Oglio and Mincio Rivers, Northern Italy) to evaluate the role played by other characteristics related to these physical contaminants in determining their toxicity as opposed to concentration alone. The modified Chironomid Life-Cycle Toxicity Test (OECD 233) was used to evaluate the multigenerational effects on the Emergence and Development Rates, Fecundity and Fertility.
View Article and Find Full Text PDFWe provide illustrated dichotomous keys for the identification of final (4th) instar larvae of south-east Asian genera of Chironomidae (Diptera), predominantly from aquatic (freshwater and maritime) habitats. The region considered comprises oriental China, Burma, Thailand, Malaysia (west and east), Brunei, Singapore and Indonesia. Eight subfamilies are represented and phylogenetically validated tribes are keyed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!