Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The spatial variation of chlorophyll a (Chl a) and factors influencing the high Chl a were studied during austral summer based on the physical and biogeochemical parameters collected near the coastal waters of Antarctica in 2010 and a zonal section along 60°S in 2011. In the coastal waters, high Chl a (>3 mg m(-3)) was observed near the upper layers (∼15 m) between 53°30'E and 54°30'E. A comparatively higher mesozooplankton biomass (53.33 ml 100 m(-3)) was also observed concordant with the elevated Chl a. Low saline water formed by melting of glacial ice and snow, as well as deep mixed-layer depth (60 m) due to strong wind (>11 ms(-1)) could be the dominant factors for this biological response. In the open ocean, moderately high surface Chl a was observed (>0.6 mg m(-3)) between 47°E and 50°E along with a Deep Chlorophyll Maximum of ∼1 mg m(-3) present at 30-40 m depth. Melt water advected from the Antarctic continent could be the prime reason for this high Chl a. The mesozooplankton biomass (22.76 ml 100 m(-3)) observed in the open ocean was comparatively lower than that in the coastal waters. Physical factors such as melting, advection of melt water from Antarctic continent, water masses and wind-induced vertical mixing may be the possible reasons that led to the increase in phytoplankton biomass (Chl a).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-014-3990-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!