Background: To analyse the frequency of re-planning and its variability dependent on the IGRT correction strategy and on the modification of the dosimetric criteria for re-planning for the spinal cord in head and neck IG-IMRT.

Methods: Daily kV-control-CTs of six head and neck patients (=175 CTs) were analysed. All volumes of interest were re-contoured using deformable image registration. Three IGRT correction strategies were simulated and the resulting dose distributions were computed for all fractions. Different sets of criteria with varying dose thresholds for re-planning were investigated. All sets of criteria ensure equivalent target coverage of both CTVs, but vary in the tolerance threshold of the spinal cord.

Results: The variations of the D95 and D2 in respect to the planned values ranged from -7% to +3% for both CTVs, and -2% to +6% for the spinal cord. Despite different correction vectors of the three IGRT strategies, the dosimetric differences were small. The number of fractions not requiring re-planning varied between 0% and 11% dependent on the applied IGRT correction strategy. In contrast, this number ranged between 32% and 70% dependent on the dosimetric thresholds, even though these thresholds were only gently modified.

Conclusions: The more precise the planned dose needs to be maintained over the treatment course, the more frequently re-planning is required. The influence of different IGRT correction strategies, even though geometrically notable, was found to be of only limited relevance for the re-planning frequency. In contrast, the definition and modification of thresholds for re-planning have a major impact on the re-planning frequency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251689PMC
http://dx.doi.org/10.1186/1748-717X-9-175DOI Listing

Publication Analysis

Top Keywords

igrt correction
20
correction strategy
12
head neck
12
re-planning
9
frequency re-planning
8
re-planning variability
8
variability dependent
8
spinal cord
8
three igrt
8
correction strategies
8

Similar Publications

Unsupervised Bayesian generation of synthetic CT from CBCT using patient-specific score-based prior.

Med Phys

December 2024

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.

Article Synopsis
  • CBCT scans are crucial for patient alignment in radiotherapy, but their image quality is often compromised by artifacts and inaccurate Hounsfield unit values, limiting their quantitative applications.
  • The study introduces an unsupervised learning approach utilizing a patient-specific diffusion model to generate synthetic CT images from CBCT, improving image quality for adaptive radiotherapy.
  • Results demonstrated that this method effectively reduced artifacts in CBCT images from various cancer types, enhancing the potential for better clinical outcomes in radiotherapy.
View Article and Find Full Text PDF

Use of surface tracking recordings to identify pitfalls during surface-guided radiotherapy.

Strahlenther Onkol

December 2024

Klinik für Strahlentherapie und Radioonkologie, Klinikum Stuttgart, Stuttgart, Germany.

Objective: The precise daily positioning of patients during radiation therapy determines the quality of the entire treatment. To avoid additional radiation exposure from regular cone-beam CT (CBCT) scans, surface-guided radiotherapy systems (SGRT) are increasingly used. The aim of this prospective clinical study was to evaluate the advantages, feasibility, and pitfalls of SGRT using the surface tracking recorder prototype of the camera component of ExacTrac Dynamic (Brainlab AG, Munich, Germany).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the development of a linac-mounted photon-counting detector (PCD) for image-guided radiotherapy (IGRT) that could significantly enhance imaging by improving soft-tissue contrast and spatial resolution compared to traditional flat panel detectors (FPDs).
  • Researchers characterized the image quality of the PCD, focusing on parameters like 2D spatial resolution, noise, and contrast, by comparing it with an FPD using various imaging techniques and calibration methods.
  • Results showed that the PCD provides a linear energy calibration and better raw contrast in images, suggesting its potential for improved tumor delineation in radiation therapy applications.
View Article and Find Full Text PDF
Article Synopsis
  • - Cone beam computed tomography (CBCT) is vital for assessing anatomical changes in patients during image-guided radiotherapy (IGRT), but artifacts can hinder its effectiveness for adaptive radiation therapy (ART).
  • - To improve CBCT image quality, the study introduces personalized lung diffusion models (PFS-LDMs) that utilize historical deformed CBCT data to create high-quality synthetic CT images tailored to individual patients after each treatment session.
  • - The results demonstrate that the PFS-LDMs significantly enhance image accuracy compared to the existing general lung diffusion model (GLDM), achieving better performance in key evaluation metrics like mean absolute error and structural similarity.
View Article and Find Full Text PDF

Purpose: This study evaluates the performance of a kilovoltage x-ray image-guidance system equipped with a novel post-processing optimization algorithm on the newly introduced TAICHI linear accelerator (Linac).

Methods: A comparative study involving image quality tests and radiation dose measurements was conducted across six scanning protocols of the kV-cone beam computed tomography (CBCT) system on the TAICHI Linac. The performance assessment utilized the conventional Feldkamp-Davis-Kress (FDK) algorithm and a novel Non-Local Means denoising and adaptive scattering correction (NLM-ASC) algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!