Background: Recombinant antibodies are highly successful in many different pathological conditions and currently enjoy overwhelming recognition of their potential. There are a wide variety of protein expression systems available, but almost all therapeutic antibodies are produced in mammalian cell lines, which mimic human glycosylation. The production of clinical-grade antibodies in mammalian cells is, however, extremely expensive. Compared to mammalian systems, protein production in yeast strains such as Pichia pastoris, is simpler, faster and usually results in higher yields.
Results: In this work, a trivalent single-chain fragment variable (scFv)-based N-terminal trimerbody, specific for the human carcinoembryonic antigen (CEA), was expressed in human embryonic kidney 293 cells and in Pichia pastoris. Mammalian- and yeast-produced anti-CEA trimerbody molecules display similar functional and structural properties, yet, the yield of trimerbody expressed in P. pastoris is about 20-fold higher than in human cells.
Conclusions: P. pastoris is an efficient expression system for multivalent trimerbody molecules, suitable for their commercial production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249718 | PMC |
http://dx.doi.org/10.1186/s12934-014-0116-1 | DOI Listing |
Glycobiology
January 2025
Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, OX1 3QU, United Kingdom.
Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:
Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200 % in the secretion level and the volumetric activity.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China.
Astaxanthin is a kind of carotenoid with a strong antioxidant ability, which has shown broad applications in the areas of healthcare, medicine, cosmetics, food additives, and aquaculture. With the increasing demand for natural products, the microbial production of astaxanthin has become a new hot spot. In this study, the astaxanthin synthesis pathway was first metabolically constructed in ()().
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 China. Electronic address:
Achieving enzyme catalysis at high substrate concentrations is a substantial challenge in industrial biocatalysis, and the role of glycosylation in post-translational modifications that modulate enzyme substrate inhibition remains poorly understood. This study provides insights into the role of N-glycosylation in substrate inhibition by comparing the catalytic properties of d-lactonohydrolase (d-Lac) derived from Fusarium moniliforme expressed in prokaryotic and eukaryotic hosts. Experimental evidence indicates that recombinant d-Lac expressed in Pichia pastoris (PpLac-WT) exhibits higher hydrolysis rates at a substrate concentration of 400 g/L, with reduced substrate inhibition and enhanced stability compared to the recombinant d-Lac expressed in Escherichia coli (EcLac-WT).
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
Glucan 1,4-alpha-maltohydrolase (3.2.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!