Somatic alterations and dysregulation of epigenetic modifiers in cancers.

Biochem Biophys Res Commun

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:

Published: December 2014

Genomic discovery efforts in patients with cancer have been critical in identifying a recurrent theme of mutations in epigenetic modifiers. A number of novel and exciting basic biological findings have come from this work including the discovery of an enzymatic pathway for DNA cytosine demethylation, a link between cancer metabolism and epigenetics, and the critical importance of post-translational modifications at specific histone residues in malignant transformation. Identification of cancer cell dependency on a number of these mutations has quickly resulted in the development of therapies targeting several of these genetic alterations. This includes, the development of mutant-selective IDH1 and IDH2 inhibitors, DOT1L inhibitors for MLL rearranged leukemias, EZH2 inhibitors for several cancer types, and the development of bromodomain inhibitors for many cancer types--all of which are in early phase clinical trials. In many cases, however, specific genetic targets linked to malignant transformation following mutations in individual epigenetic modifiers are not yet known. In this review we present functional evidence of how alterations in frequently mutated epigenetic modifiers promote malignant transformation and how these alterations are being targeted for cancer therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630175PMC
http://dx.doi.org/10.1016/j.bbrc.2014.08.004DOI Listing

Publication Analysis

Top Keywords

epigenetic modifiers
16
malignant transformation
12
inhibitors cancer
8
cancer
6
somatic alterations
4
alterations dysregulation
4
epigenetic
4
dysregulation epigenetic
4
modifiers
4
modifiers cancers
4

Similar Publications

Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.

View Article and Find Full Text PDF

Plants are increasingly exposed to stress-induced factors, including heavy metals. Zinc, although it is a microelement, at high concentrations can be phytotoxic to plants by limiting their growth and development. The presented research confirmed the inhibition effect of Zn on morphological and physiological parameters in barley plants.

View Article and Find Full Text PDF

Airway MMP-12 and DNA methylation in COPD: an integrative approach.

Respir Res

January 2025

Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden.

Background: In COPD, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors [tissue inhibitors of metalloproteinases (TIMPs)] is shifted towards excessive degradation, reflected in bronchoalveolar lavage (BAL) as increased MMP concentrations. Because of their critical role in lung homeostasis, MMP activity is tightly regulated, but to what extent this regulation occurs through epigenetic mechanisms remains unknown.

Methods: To explore the interplay between MMPs, TIMPs, and DNA methylation (DNAm) we (1) analysed MMP-9, -12, and TIMP-1 concentrations in BAL fluid, and profiled DNAm in BAL cells from 18 COPD and 30 control subjects, (2) estimated protein-COPD relationships using multivariable regression, (3) identified protein quantitative trait methylation loci (pQTMs) with COPD as a potential modifier in a separate interaction model, and (4) integrated significant interactions with a previous COPD GWAS meta-analysis.

View Article and Find Full Text PDF

Redox modification of mA demethylase SlALKBH2 in tomato regulates fruit ripening.

Nat Plants

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.

View Article and Find Full Text PDF

Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!