We recently characterized DahlS.Z-Leprfa/Leprfa (DS/obese) rats, derived from a cross between Dahl salt-sensitive rats and Zucker rats, as a new animal model of metabolic syndrome (MetS). Although the phenotype of DS/obese rats is similar to that of humans with MetS, the pathophysiological and metabolic characteristics in each cell type remain to be clarified. Hence, the establishment of induced pluripotent stem cells (iPSCs) derived from MetS rats is essential for investigations of MetS in vitro. Reports of rat iPSCs (riPSCs), however, are few because of the difficulty of comparing to other rodents such as mouse. Recently, the advantage of using mesenchymal stromal cells (MSCs) as a cell source for generating iPSCs was described. We aimed to establish riPSCs from MSCs in adipose tissues of both DS/obese rats and their lean littermates, DahlS.Z-Lepr+/Lepr+ (DS/lean) rats using lentivirus vectors with only three factors Oct4, Klf4, and Sox2 without c-Myc. The morphology, gene expression profiles, and protein expression of established colonies showed embryonic stem cell (ESCs)-like properties, and the differentiation potential into cells from all three germ layers both in vitro and in vivo (teratomas). Both riPSCs became adipocytes after induction of adipogenesis by insulin, T3, and dexamethasone. Real-time PCR analysis also revealed that both riPSCs and the adipose tissue from DS/obese and DS/lean rats possess similar expression patterns of adipocyte differentiation-related genes. We succeeded in generating riPSCs effectively from MSCs of both DS/obese and DS/lean rats. These riPSCs may well serve as highly effective tools for the investigation of MetS pathophysiology in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128712PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104462PLOS

Publication Analysis

Top Keywords

ds/obese rats
12
ds/lean rats
12
rats
9
pluripotent stem
8
stem cells
8
model metabolic
8
metabolic syndrome
8
ds/obese ds/lean
8
ripscs
6
ds/obese
5

Similar Publications

Evidence from clinical trials suggests that the cardioprotective effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors may arise through non-glycemic control-related mechanisms. Further, the cardiovascular advantages of SGLT2 inhibitors are likely present among non-diabetic patients with known cardiovascular diseases (CVDs). Here, we studied the impact of ipragliflozin, a selective SGLT2 inhibitor, on cardiac histopathology and microRNA (miRNA) expression profiles in a non-diabetic rat model of cardiomyopathy.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinase (PI3K) signaling promotes the differentiation and proliferation of regulatory B (Breg) cells, and the lipid phosphatase phosphatase and tensin homolog deleted on chromosome 10 (PTEN) antagonizes the PI3K-Akt signaling pathway. We previously demonstrated that cardiac Akt activity is increased and that restraint stress exacerbates hypertension and both heart and adipose tissue (AT) inflammation in DS/obese rats, an animal model of metabolic syndrome (MetS). We here examined the effects of restraint stress and pharmacological inhibition of PTEN on heart and AT pathology in such rats.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is an endocrine organ that contributes to thermogenesis and energy consumption. We investigated the effects of salt loading and surgical removal of whitened interscapular BAT (iBAT) on cardiac and adipose tissue pathology in DahlS.Z-Lepr /Lepr (DS/obese) rats, an animal model of metabolic syndrome (MetS).

View Article and Find Full Text PDF

Prebiotics ameliorate dysbiosis and influence metabolism and the immune system, but their effects on cardiovascular complications in metabolic disorders remain largely unknown. We here investigated the effects of the soluble fiber inulin on cardiac, adipose tissue, and hepatic pathology as well as on metabolic disorders in DahlS.Z-/ (DS/obese) rats, an animal model of metabolic syndrome (MetS).

View Article and Find Full Text PDF

Objectives: Evidence suggests that visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) should be considered as distinct types of white fat. Although VAT plays a key role in metabolic syndrome (MetS), the role of subcutaneous adipose tissue (SAT) has been unclear. DahlS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!