https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25111731&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 2511173120211021
1522-25947412015JulMagnetic resonance in medicineMagn Reson MedMeasurement of T1 relaxation time of osteochondral specimens using VFA-SWIFT.175184175-18410.1002/mrm.25398To evaluate the feasibility of SWIFT with variable flip angle (VFA) for measurement of T1 relaxation time in Gd-agarose-phantoms and osteochondral specimens, including regions of very short T2 *, and compare with T1 measured using standard methods METHODS: T1 s of agarose phantoms with variable concentration of Gd-DTPA2- and nine pairs of native and trypsin-treated bovine cartilage-bone specimens were measured. For specimens, VFA-SWIFT, inversion recovery (IR) fast spin echo (FSE) and saturation recovery FSE were used. For phantoms, additionally spectroscopic IR was used. Differences and agreement between the methods were assessed using nonparametric Wilcoxon and Kruskal-Wallis tests and intraclass correlation.The different T1 mapping methods agreed well in the phantoms. VFA-SWIFT allowed reliable measurement of T1 in the osteochondral specimens, including regions where FSE-based methods failed. The T1 s measured by VFA-SWIFT were shifted toward shorter values in specimens. However, the measurements correlated significantly (highest correlation VFA-SWIFT versus FSE was r = 0.966). SNR efficiency was generally highest for SWIFT, especially in the subchondral bone.Feasibility of measuring T1 relaxation time using VFA-SWIFT in osteochondral specimens and phantoms was demonstrated. A shift toward shorter T1 s was observed for VFA-SWIFT in specimens, reflecting the higher sensitivity of SWIFT to short T2 * spins. Magn Reson Med 74:175-184, 2015. © 2014 Wiley Periodicals, Inc.© 2014 Wiley Periodicals, Inc.NissiMikko JMJDepartment of Applied Physics, University of Eastern Finland, Kuopio, Finland.Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota, USA.LehtoLauri JLJCenter for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.Department of Neurobiology, A.I. Virtanen Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland.CorumCurtis ACACenter for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.IdiyatullinDjaudatDCenter for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.EllermannJutta MJMCenter for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.GröhnOlli H JOHJDepartment of Neurobiology, A.I. Virtanen Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland.NieminenMiika TMTDepartment of Diagnostic Radiology, Oulu University Hospital and University of Oulu, Oulu, Finland.Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.engKL2 TR000113TRNCATS NIH HHSUnited StatesP41 EB015894EBNIBIB NIH HHSUnited StatesP41 RR008079RRNCRR NIH HHSUnited StatesR21 CA139688CANCI NIH HHSUnited StatesJournal Article20140808
United StatesMagn Reson Med85052450740-3194Gd-DTPA2-SWIFTT1 relaxationbonecartilagevariable flip angle
2014552014722014714201481260201481261201481260201628ppublish25111731NIHMS659843PMC432436610.1002/mrm.25398Bashir A, Gray ML, Burstein D. Gd-DTPA2− as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–673.8916016Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–232.10508281Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med. 2005;53(1):237–241. doi: 10.1002/mrm.20314.10.1002/mrm.2031415690526Wiener E, Pfirrmann CW, Hodler J. Spatial variation in T1 of healthy human articular cartilage of the knee joint. Br J Radiol. 2010;83(990):476–485. doi: 10.1259/bjr/62779246.10.1259/bjr/62779246PMC347359219723767Berberat JE, Nissi MJ, Jurvelin JS, Nieminen MT. Assessment of interstitial water content of articular cartilage with T1 relaxation. Magn Reson Imaging. 2009;27(5):727–732. doi: 10.1016/j.mri.2008.09.005.10.1016/j.mri.2008.09.00519056195Nissi MJ, Töyräs J, Laasanen MS, Rieppo J, Saarakkala S, Lappalainen R, Jurvelin JS, Nieminen MT. Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J Orthop Res. 2004;22(3):557–564. doi: 10.1016/j.orthres.2003.09.008.10.1016/j.orthres.2003.09.00815099635Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at for Gd-DTPA and Gd-BOPTA. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2012;14:26. doi: 10.1186/1532-429X-14-26.10.1186/1532-429X-14-26PMC340548622540153Heye T, Yang SR, Bock M, Brost S, Weigand K, Longerich T, Kauczor HU, Hosch W. MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol. 2012;22(6):1224–1232. doi: 10.1007/s00330-012-2378-5.10.1007/s00330-012-2378-522302503Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum. 1970;41(2):250–251.Christensen KA, Grant DM, Schulman EM, Walling C. Optimal determination of relaxation times of fourier transform nuclear magnetic resonance. Determination of spin-lattice relaxation times in chemically polarized species. The Journal of Physical Chemistry. 1974;78(19):1971–1977. doi: 10.1021/j100612a022.10.1021/j100612a022Henderson E, McKinnon G, Lee TY, Rutt BK. A fast 3D look-locker method for volumetric T1 mapping. Magn Reson Imaging. 1999;17(8):1163–1171.10499678Fram EK, Herfkens RJ, Johnson GA, Glover GH, Karis JP, Shimakawa A, Perkins TG, Pelc NJ. Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging. 1987;5(3):201–208.3626789Wang J, Qiu M, Kim H, Constable RT. T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson. 2006;182(2):283–292. doi: 10.1016/j.jmr.2006.07.005.10.1016/j.jmr.2006.07.00516875852Siversson C, Tiderius CJ, Neuman P, Dahlberg L, Svensson J. Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging. 2010;31(5):1203–1209. doi: 10.1002/jmri.22159.10.1002/jmri.2215920432357Reiter DA, Lin PC, Fishbein KW, Spencer RG. Multicomponent T2 relaxation analysis in cartilage. Magn Reson Med. 2009;61(4):803–809. doi: 10.1002/mrm.21926.10.1002/mrm.21926PMC271121219189393Du J, Takahashi AM, Chung CB. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging. 2009;29(2):412–421. doi: 10.1002/jmri.21465.10.1002/jmri.2146519161197Springer F, Steidle G, Martirosian P, Syha R, Claussen CD, Schick F. Rapid Assessment of Longitudinal Relaxation Time in Materials and Tissues With Extremely Fast Signal Decay Using UTE Sequences and the Variable Flip Angle Method. Invest Radiol. 2011;46(10):610–617. doi: 10.1097/RLI.0b013e31821c44cd.10.1097/RLI.0b013e31821c44cd21577126Filho GH, Du J, Pak BC, Statum S, Znamorowski R, Haghighi P, Bydder G, Chung CB. Quantitative characterization of the Achilles tendon in cadaveric specimens: T1 and T2* measurements using ultrashort-TE MRI at 3 T. AJR Am J Roentgenol. 2009;192(3):W117–124. doi: 10.2214/AJR.07.3990.10.2214/AJR.07.399019234239Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson. 2010;207(2):304–311. doi: 10.1016/j.jmr.2010.09.013.10.1016/j.jmr.2010.09.01320980179Gatehouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol. 2003;58(1):1–19.12565203Techawiboonwong A, Song HK, Leonard MB, Wehrli FW. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology. 2008;248(3):824–833. doi: 10.1148/radiol.2482071995.10.1148/radiol.2482071995PMC279809318632530Crues J, Bydder G. Frontiers in musculoskeletal imaging. J Magn Reson Imaging. 2007;25(2):232–233. doi: 10.1002/jmri.20862.10.1002/jmri.2086217260398Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson. 2006;181(2):342–349. doi: 10.1016/j.jmr.2006.05.014.10.1016/j.jmr.2006.05.01416782371Idiyatullin D, Corum C, Moeller S, Garwood M. Gapped pulses for frequency-swept MRI. J Magn Reson. 2008;193(2):267–273. doi: 10.1016/j.jmr.2008.05.009.10.1016/j.jmr.2008.05.009PMC256678018554969Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003;27(6):825–846.14600447Rahmer J, Bornert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med. 2006;55(5):1075–1082. doi: 10.1002/mrm.20868.10.1002/mrm.2086816538604Wang L, Corum CA, Idiyatullin D, Garwood M, Zhao Q. T(1) estimation for aqueous iron oxide nanoparticle suspensions using a variable flip angle SWIFT sequence. Magn Reson Med. 2013;70(2):341–347. doi: 10.1002/mrm.24831.10.1002/mrm.24831PMC381280123813886Zheng S, Xia Y. Multi-components of T2 relaxation in ex vivo cartilage and tendon. J Magn Reson. 2009;198(2):188–196. doi: 10.1016/j.jmr.2009.02.005.10.1016/j.jmr.2009.02.005PMC268093019269868Zheng S, Xia Y, Bidthanapally A, Badar F, Ilsar I, Duvoisin N. Damages to the extracellular matrix in articular cartilage due to cryopreservation by microscopic magnetic resonance imaging and biochemistry. Magn Reson Imaging. 2009;27(5):648–655.PMC274290519106023Reiter DA, Peacock A, Spencer RG. Effects of frozen storage and sample temperature on water compartmentation and multiexponential transverse relaxation in cartilage. Magn Reson Imaging. 2011;29(4):561–567. doi: 10.1016/j.mri.2010.10.011.10.1016/j.mri.2010.10.011PMC307902121277724Nissi MJ, Rieppo J, Töyräs J, Laasanen MS, Kiviranta I, Jurvelin JS, Nieminen MT. T(2) relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage. Osteoarthritis Cartilage. 2006;14(12):1265–1271. doi: 10.1016/j.joca.2006.06.002.10.1016/j.joca.2006.06.00216843689Horch RA, Gochberg DF, Nyman JS, Does MD. Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med. 2012 doi: 10.1002/mrm.24186..10.1002/mrm.24186.PMC335745422294340Perazella MA. Tissue deposition of gadolinium and development of NSF: a convergence of factors. Semin Dial. 2008;21(2):150–154. doi: 10.1111/j.1525-139X.2007.00403.x.10.1111/j.1525-139X.2007.00403.x18226004Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007;242(3):647–649. doi: 10.1148/radiol.2423061640.10.1148/radiol.242306164017213364Nieminen MT, Rieppo J, Silvennoinen J, Töyräs J, Hakumäki JM, Hyttinen MM, Helminen HJ, Jurvelin JS. Spatial assessment of articular cartilage proteoglycans with Gd-DTPA -enhanced T1 imaging. Magn Reson Med. 2002;48(4):640–648. doi: 10.1002/mrm.10273.10.1002/mrm.1027312353281Kendi AT, Khariwala SS, Zhang J, Idiyatullin DS, Corum CA, Michaeli S, Pambuccian SE, Garwood M, Yueh B. Transformation in mandibular imaging with sweep imaging with fourier transform magnetic resonance imaging. Archives of otolaryngology--head & neck surgery. 2011;137(9):916–919. doi: 10.1001/archoto.2011.155.10.1001/archoto.2011.155PMC337954221930980Zhou R, Idiyatullin D, Moeller S, Corum C, Zhang H, Qiao H, Zhong J, Garwood M. SWIFT detection of SPIO-labeled stem cells grafted in the myocardium. Magn Reson Med. 2010;63(5):1154–1161. doi: 10.1002/mrm.22378.10.1002/mrm.22378PMC291448420432286Xia Y. Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14-microm resolution. Magn Reson Med. 1998;39(6):941–949.9621918Nieminen MT, Töyräs J, Laasanen MS, Silvennoinen J, Helminen HJ, Jurvelin JS. Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. J Biomech. 2004;37(3):321–328.14757451Pauli C, Bae WC, Lee M, Lotz M, Bydder GM, D’Lima DL, Chung CB, Du J. Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings. Radiology. 2012;264(2):484–493. doi: 10.1148/radiol.12111883.10.1148/radiol.12111883PMC340135322653187Du J, Carl M, Bae WC, Statum S, Chang EY, Bydder GM, Chung CB. Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC) Osteoarthritis Cartilage. 2013;21(1):77–85. doi: 10.1016/j.joca.2012.09.009.10.1016/j.joca.2012.09.009PMC405115623025927Warner J, Donell S, Wright K, Venturi L, Hills B. The characterisation of mammalian tissue with 2D relaxation methods. Magn Reson Imaging. 2010;28(7):971–981. doi: 10.1016/j.mri.2010.03.015.10.1016/j.mri.2010.03.01520691926Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med. 2010;64(3):680–687. doi: 10.1002/mrm.22459.10.1002/mrm.22459PMC293307320806375Wang L, Schweitzer ME, Padua A, Regatte RR. Rapid 3D-T(1) mapping of cartilage with variable flip angle and parallel imaging at 3. 0T. J Magn Reson Imaging. 2008;27(1):154–161. doi: 10.1002/jmri.21109.10.1002/jmri.2110918050327Dathe H, Helms G. Exact algebraization of the signal equation of spoiled gradient echo MRI. Phys Med Biol. 2010;55(15):4231–4245. doi: 10.1088/0031-9155/55/15/003.10.1088/0031-9155/55/15/00320616401Carl M, Bydder M, Du J, Takahashi A, Han E. Optimization of RF excitation to maximize signal and T2 contrast of tissues with rapid transverse relaxation. Magn Reson Med. 2010;64(2):481–490. doi: 10.1002/mrm.22433.10.1002/mrm.2243320665792Gupta RK. A new look at the method of variable nutation angle for the measurement of spin-lattice relaxation times using fourier transform NMR. Journal of Magnetic Resonance (1969) 1977;25(1):231–235. doi: 10.1016/0022-2364(77)90138-x.10.1016/0022-2364(77)90138-x