A variety of ion traps are used in mass spectrometry. A key feature shared by most of them is the ability to perform tandem mass spectrometry (MS/MS). The Orbitrap is perhaps the most notable ion trap in which MS/MS has yet to be performed. An electrostatic linear ion trap (ELIT) is analogous to an orbitrap in that ions are trapped using solely electrostatic fields. However, the relatively simple ion motion within an ELIT facilitates analysis of fragment ions produced within the device. In this report, we describe an ELIT to which we have added a target for surface induced dissociation (SID). When combined with our previously described method for isolating a precursor ion trapped in an ELIT,1 this apparatus enables MS/MS to be performed. Measurement of product ion m/z is facilitated by the fact that the ELIT is isochronous over the energy range of 1850-2000 eV so that changes to ion energy during SID do not cause major m/z shifts. We demonstrate MS/MS by isolating and dissociating each compound in a four component mixture of tetraalkylphosphonium cations. We also discuss the optimization of collision energy and the length of time that the SID target is available for collision, two parameters that are important in the performance of these experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac502143p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!