Mutations in the ubiquitously expressed pre-mRNA processing factors 3, 8, and 31 (PRPF3, PRPF8, and PRPF31) cause nonsyndromic dominant retinitis pigmentosa in humans, an inherited retinal degeneration. It is unclear what mechanisms, or which cell types of the retina, are affected. Transgenic mice with the human mutations in these genes display late-onset morphological changes in the retinal pigment epithelium (RPE). To determine whether the observed morphological changes are preceded by abnormal RPE function, we investigated its phagocytic function in Prpf3(T494M/T494M), Prpf8(H2309P/H2309P), and Prpf31(+/-) mice. We observe decreased phagocytosis in primary RPE cultures from mutant mice, and this is replicated by shRNA-mediated knockdown of PRPF31 in human ARPE-19 cells. The diurnal rhythmicity of phagocytosis is almost lost, indicated by the marked attenuation of the phagocytic burst 2 hours after light onset. The strength of adhesion between RPE apical microvilli and photoreceptor outer segments also declined during peak adhesion in all mutants. In all models, at least one of the receptors involved in binding and internalization of shed photoreceptor outer segments was subjected to changes in localization. Although the mechanism underlying these changes in RPE function is yet to be elucidated, these data are consistent with the mouse RPE being the primary cell affected by mutations in the RNA splicing factors, and these changes occur at an early age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188860PMC
http://dx.doi.org/10.1016/j.ajpath.2014.06.026DOI Listing

Publication Analysis

Top Keywords

pre-mrna processing
8
processing factors
8
retinal pigment
8
pigment epithelium
8
morphological changes
8
rpe function
8
photoreceptor outer
8
outer segments
8
rpe
6
changes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!