Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: nanoscale effects and resonant-level scattering.

ACS Appl Mater Interfaces

Artie McFerrin Department of Chemical Engineering, Texas A&M University , 3122 TAMU, College Station, Texas 77843, United States.

Published: September 2014

Recent studies focusing on enhancing the thermoelectric performance of metal oxides were primarily motivated by their low cost, large availability of the component elements in the earth's crust, and their high stability. So far, these studies indicate that n-type materials, such as ZnO, have much lower thermoelectric performance than their p-type counterparts. Overcoming this limitation requires precisely tuning the thermal and electrical transport through n-type metal oxides. One way to accomplish this is through the use of optimally doped bulk assemblies of ZnO nanowires. In this study, the thermoelectric properties of n-type aluminum and gallium dually doped bulk assembles of ZnO nanowires were determined. The results indicated that a high zT of 0.6 at 1000 °C, the highest experimentally observed for any n-type oxide, is possible. The high performance is attributed to the tailoring of the ZnO phase composition, nanostructuring of the material, and Zn-III band hybridization-based resonant scattering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5023489DOI Listing

Publication Analysis

Top Keywords

zno nanowires
12
thermoelectric performance
8
metal oxides
8
doped bulk
8
zno
5
engineering efficient
4
efficient thermoelectrics
4
thermoelectrics large-scale
4
large-scale assemblies
4
assemblies doped
4

Similar Publications

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Potential of Zinc Oxide Nanostructures in Biosensor Application.

Biosensors (Basel)

January 2025

Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia.

The burgeoning field of biosensors has seen significant advancements with the induction of zinc oxide (ZnO) nanostructures, because of their unique structural, electrical, and optical properties. ZnO nanostructures provide numerous benefits for biosensor applications. Their superior electron mobility enables effective electron transfer between the bioreceptor and transducer, enhancing sensitivity and reducing detection limits.

View Article and Find Full Text PDF

This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Reshape Iron Nanoparticles Using a Zinc Oxide Nanowire Array for High Efficiency and Stable Electrocatalytic Nitrogen Fixation.

ACS Appl Mater Interfaces

January 2025

Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.

As a type of century-old catalyst, the use of iron-based materials runs through the Haber-Bosch process and electrochemical synthesis of ammonia because of its excellent capability, low cost, and abundant reserves. How to continuously improve its catalytic activity and stability for electrochemical nitrogen fixation has always been a goal pursued by scientific researchers. Herein, we develop a free-standing iron-based catalyst, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!