We demonstrate the potential of a converging-diverging microchannel to split a stream of nanoparticles towards the interfacial region of the dispersed and the carrier phases, introduced through the middle inlet and through the remaining two inlets respectively, while maintaining a low Reynolds number limit (<10) for the flow of both phases. In addition to the splitting of passive tracer particles, such as polystyrene beads as used herein, the present setup has the potential to be utilized for a controlled reaction and thereby the separation of products towards an intended location, as observed from the experimentation with silver-nanoparticles and hydrogen-peroxide solution. Moreover, the microscale dimension of the channel allows controlled deposition of the reaction product over the bottom surface of the channel, allowing the possibility of bottom-up fabrication of microscale features. We unveil the underlying hydrodynamics that lead to such behaviours through numerical simulations, which are consistent with the experimental observations. The phenomenological features are found to be guided by the splitting of the intrinsic streamlines conforming to the flow geometry under consideration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4lc00542bDOI Listing

Publication Analysis

Top Keywords

stream nanoparticles
8
converging-diverging microchannel
8
controlled splitting
4
splitting focusing
4
focusing stream
4
nanoparticles converging-diverging
4
microchannel demonstrate
4
demonstrate potential
4
potential converging-diverging
4
microchannel split
4

Similar Publications

Background: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas.

View Article and Find Full Text PDF

Challenges of Biological Complexity in the Study of Nanotoxicology.

Chem Res Toxicol

January 2025

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

The scale of nanoparticle use in consumer goods has grown exponentially over several decades owing to the unique properties of materials in this size range. At the same time, well-defined end of life cycle disposal strategies have not been developed for most materials, meaning that we are approaching the potential for a new ecological disaster with the release of millions of metric tons of nanoparticles into the waste stream. The field of nanotoxicology has grown to meet the challenge of investigating the potential hazards of these materials and has already identified toxicity mechanisms that affect multiple tropes of life.

View Article and Find Full Text PDF

Plastic mulching film is ubiquitous in modern agriculture for its heat preservation and moisture retention functions. However, plastic mulching film waste accumulated on land results in microplastic pollution, posing potential hazards as these micro and nanoplastics can enter the food chain. Chemical upcycling of waste mulching film is an emerging strategy to realize sustainable development and circular economy.

View Article and Find Full Text PDF

Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy.

Acc Chem Res

January 2025

Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.

View Article and Find Full Text PDF

The water-gas shift (WGS) reaction is one of the most significant reactions in hydrogen technology since it can be used directly to produce hydrogen from the reaction of CO and water; it is also a side reaction taking place in the hydrocarbon reforming processes, determining their selectivity towards H production. The development of highly active WGS catalysts, especially at temperatures below ~450 °C, where the reaction is thermodynamically favored but kinetically limited, remains a challenge. From a fundamental point of view, the reaction mechanism is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!