AI Article Synopsis

Article Abstract

The study examined dynamics of the effect of novel phenol antioxidant preparation 3-(3'-tertbutyl- 4'-hydroxyphenyl)propyl thiosulfonate sodium (TS-13) on expression of antioxidant protection enzymes genes GSTP1 and NQO1 and on the content of protein transcription factors NF-κB and ATF-2 in mouse liver. Expression of GSTP1 gene decreased significantly on days 4 and 7 after per os administration of TS-13 (100 mg/kg), but increased on post-administration day 14. On days 7 and 14 post-administration, expression of NQO1 gene was significantly increased. On day 7, the hepatic content of the phosphorylated form of ATF-2 and two subunits of nuclear factor NF-κB (p50, p65) decreased significantly.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-014-2594-xDOI Listing

Publication Analysis

Top Keywords

thiosulfonate sodium
8
expression gstp1
8
gstp1 nqo1
8
protein transcription
8
transcription factors
8
mouse liver
8
3-3'-tert-butyl-4'-hydroxyphenylpropyl thiosulfonate
4
expression
4
sodium expression
4
nqo1 genes
4

Similar Publications

Catalyst-Free Synthesis of Thiosulfonates and 3-Sulfenylindoles from Sodium Sulfinates in Water.

Chemistry

June 2024

School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China.

This paper presents a green and efficient aqueous-phase method for the synthesis of thiosulfonates, which has the benefits of no need for catalysts or redox reagents and a short reaction time, providing a method with great economic value for synthesizing thiosulfonates. Furthermore, 3-Sulfenylindoles can be easily synthesized using this method, which expands the potential applications of this reaction.

View Article and Find Full Text PDF

The development of means of the prevention and treatment of age-related neurodegenerative diseases, as well as geroprotectors, among other things, is based on the inflammatory and free radical theories of aging. In this context, we studied the effect of sodium monophenol 3-(3'-tert-butyl-4'-hydroxyphenyl)propyl thiosulfonate (TS-13) on the behavioral and locomotor activity of C57BL/6 mice in modeling Parkinson's disease by MPTP neurotoxin injection. TS-13 administration significantly improved orientation and exploratory activity and emotional response of the animals in the open field test, but did not affect the increase in anxiety caused by MPTP injection.

View Article and Find Full Text PDF

A controllable and rapid synthesis of disulfides and thiosulfonates from sodium sulfinates mediated by hydroiodic acid is presented for the first time. In these reactions, ethanol and HO are employed as solvents to generate different products, thiosulfonates can be further transformed to corresponding disulfides in an ethanol reaction system. Moreover, these simple methods are environmentally benign and can be performed under mild conditions with a short reaction time, showing good functional group tolerance.

View Article and Find Full Text PDF

Using phenyliodine diacetate as an oxidant and nickel acetate as a promoter, a wide range of unsymmetric thiosulfonates could be furnished easily in moderate to excellent yields starting from N-substituted -thiocarbamates and sodium sulfinates. This protocol features mild conditions, short reaction times, and high atomic utilization, which can provide an alternative method for the synthesis of unsymmetric thiosulfonates. In addition, the reaction could be scaled up on a gram scale, showing potential application value in industry.

View Article and Find Full Text PDF

This review highlights the preparation of sodium sulfinates (RSONa) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!