Although it is generally acknowledged that auto-phagy plays an important role in tumorigenesis and therapy, studies of autophagy in different cell types and under different conditions have led to conflicting theories regarding the influence of autophagy on cell death. In the present study, we explored the role of autophagy and its underlying mechanism in the inhibitory effects of arsenic trioxide (As2O3) on Burkitt's lymphoma Raji cells. The results showed that As2O3 significantly inhibited the proliferation of Raji cells in a dose- and time-dependent manner, induced G2/M phase cell cycle arrest and apoptosis. Moreover, As2O3 also promoted the formation of autophagic vacuoles, as well as increased the degradation of autophagy substrate P62 protein, which was accompanied by an upregulation of Beclin-1 gene and a downregulation of Bcl-2 gene expression. 3-Methyladenine, an autophagy inhibitor, not only increased cell viability through inhibiting autophagic cell death and apoptosis, but also reversed the upregulation of Beclin-1 gene and the downregulation of Bcl-2 gene in the Raji cells induced by As2O3. These results may lead to a better understanding of the action of As2O3 and may provide evidence that autophagy plays an important role in the regulation of cell death. Therefore, regulation of autophagic activity may be a promising therapy for patients with Burkitt's lymphoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2014.3369 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!