Background: Longitudinal studies of illness progression in patients with major depressive disorder (MDD) indicate that the onset of subsequent depressive episodes becomes increasingly decoupled from external stressors. A possible mechanism underlying this phenomenon is that multiple episodes induce long-lasting neurobiological changes that confer increased risk for recurrence. Prior morphometric studies have frequently reported volumetric reductions in patients with MDD--especially in medial prefrontal cortex (mPFC) and the hippocampus--but few studies have investigated whether these changes are exacerbated by prior episodes.
Methods: In a sample of 103 medication-free patients with depression and control subjects with no history of depression, structural magnetic resonance imaging was performed to examine relationships between number of prior episodes, current stress, hippocampal subfield volume and cortical thickness. Volumetric analyses of the hippocampus were performed using a recently validated subfield segmentation approach, and cortical thickness estimates were obtained using vertex-based methods. Participants were grouped on the basis of the number of prior depressive episodes and current depressive diagnosis.
Results: Number of prior episodes was associated with both lower reported stress levels and reduced volume in the dentate gyrus. Cortical thinning of the left mPFC was associated with a greater number of prior depressive episodes but not current depressive diagnosis.
Conclusions: Collectively, these findings are consistent with preclinical models suggesting that the dentate gyrus and mPFC are especially vulnerable to stress exposure and provide evidence for morphometric changes that are consistent with stress-sensitization models of recurrence in MDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277904 | PMC |
http://dx.doi.org/10.1016/j.biopsych.2014.06.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!