A label-free fluorescent assay for the detection of trypsin by using oligonucleotide-templated silver nanoclusters (Ag NCs) and cytochrome c (Cyt c) has been demonstrated. When negatively charged Ag NCs and positively charged Cyt c are mixed, they tend to form a hybrid complex, and then lead the fluorescence of Ag NCs to be quenched significantly due to electron transfer between Ag NCs and the heme cofactor of Cyt c. In the presence of trypsin, it catalyzes the hydrolytic cleavage of Cyt c to small peptide fragments, and releases the heme moiety from the Ag NCs/Cyt c complex; the quenched fluorescence restores therewith. By virtue of this specific response, the fluorescent biosensor has a linear range of from 0.7 to 4 μg mL(-1) and from 9 to 120 μg mL(-1) with a detection limit of 58.7 ng mL(-1). Aside from the easy manufacture aspect, our method also possesses a high signal-to-background ratio (~11), excellent selectivity and good biocompatibility, which makes it a promising bioanalysis for a trypsin activity assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.30.811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!