Sleep duration is genetically regulated, but the genetic variants are largely unknown. We aimed to identify such genes using a genome-wide association study (GWAS) combined with RNA expression at the population level, and with experimental verification. A GWAS was performed in a Finnish sample (n = 1941), and variants with suggestive association (P < 5 × 10(-5) ) were tested in a follow-up sample from the same population with sleep duration (n = 6834) and time in bed (n = 1720). Variants with pointwise association of P < 0.05 in the follow-up sample were analysed further. First, we correlated genotypes with transcript expression levels with sleep duration (n = 207). The expression levels of significant transcripts were further studied in experimental sleep restriction. Of the 31 variants with P < 5 × 10(-5) in the discovery sample, three variants showed nominal allelic association (P < 0.05) in the follow-up sample: rs10914351, near PTPRU (P = 0.049), rs1037079 in PCDH7-CENTD1 (P = 0.011) and rs2031573 near KLF6 (P = 0.044). The risk alleles for shorter sleep (rs2031573 and rs1037079) were also associated with higher KLF6 and PCDH7 expression levels (P < 0.05). Experimental sleep restriction increased the expression of KLF6 (P < 0.01). These data suggest that rs2031573 near KLF6 or related loci and rs1037079 between PCDH7-CENTD1 or related loci may contribute to the regulation of sleep duration via gene expression. These results illustrate the utility of combining different analytical approaches to identify genetic determinants for traits related to sleep physiology. However, additional studies are needed in order to understand the roles of KLF6 and PCDH7 in sleep regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsr.12175DOI Listing

Publication Analysis

Top Keywords

genome-wide association
8
association study
8
sleep duration
8
study sleep
4
duration finnish
4
finnish population
4
population sleep
4
duration genetically
4
genetically regulated
4
regulated genetic
4

Similar Publications

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Background: Despite prior observational studies suggesting a link between gut microbiota to Kawasaki disease (KD), these findings remain debated. This study aimed to assess the association between gut microbiota and KD on a genetic level using a two-sample Mendelian randomization (MR) analysis.

Methods: This two-sample MR analysis utilized summary statistics from the largest genome-wide association study meta-analysis on gut microbiota conducted by the MiBioGen consortium.

View Article and Find Full Text PDF

A cross-tissue transcriptome-wide association study identifies new susceptibility genes for benign prostatic hyperplasia.

Sci Rep

January 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, People's Republic of China.

Benign prostatic hyperplasia (BPH) is a prevalent urinary system disorder. Despite evidence of a significant genetic component from previous studies, the specific pathogenic genes and biological mechanisms are still largely unknown. The study utilized the FinnGen R10 dataset, encompassing 177,901 individuals (36,601 cases and 141,300 controls), and the GTEx v8 EQTLs files to conduct single-tissue and cross-tissue transcriptome-wide association studies (TWAS).

View Article and Find Full Text PDF

Genetic association of lipid-lowering drug target genes with pancreatic cancer: a Mendelian randomization study.

Sci Rep

January 2025

Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.

Previous studies have found that dyslipidemia is a risk factor for pancreatic cancer (PC), and that lipid-lowering drugs may reduce the risk of PC. However, it is not clear whether dyslipidemia causes PC. The Mendelian randomization (MR) study aimed to investigate the causal role of lipid traits in pancreatic cancer and to assess the potential impact of lipid-lowering drug targets on pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!