A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. | LitMetric

The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium.

Biomaterials

INEB - Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INFACTS - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Superior de Ciências da Saúde-Norte, Department of Pharmaceutical Sciences, CESPU, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal. Electronic address:

Published: November 2014

Glucagon like peptide-1 (GLP-1) is an incretin hormone that is in the pipeline for type 2 diabetes mellitus (T2DM) therapy. However, oral administration of GLP-1 is hindered by the harsh conditions of the gastrointestinal tract and poor bioavailability. In this study, three nanosystems composed by three different biomaterials (poly(lactide-co-glycolide) polymer (PLGA), Witepsol E85 lipid (solid lipid nanoparticles, SLN) and porous silicon (PSi) were developed and loaded with GLP-1 to study their permeability in vitro. All the nanoparticles presented a size of approximately 200 nm. The nanoparticles' interaction with the mucus and the intestinal cells were enhanced after coating with chitosan (CS). PSi nanosystems presented the best association efficiency (AE) and loading degree (LD), even though a high AE was also observed for PLGA nanoparticles and SLN. Among all the nanosystems, PLGA and PSi were the only nanoparticles able to sustain the release of GLP-1 in biological fluids when coated with CS. This characteristic was also maintained when the nanosystems were in contact with the intestinal Caco-2 and HT29-MTX cell monolayers. The CS-coated PSi nanoparticles showed the highest GLP-1 permeation across the intestinal in vitro models. In conclusion, PLGA + CS and PSi + CS are promising nanocarriers for the oral delivery of GLP-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2014.07.026DOI Listing

Publication Analysis

Top Keywords

nanoparticles sln
8
psi nanoparticles
8
glp-1
7
nanoparticles
5
impact nanoparticles
4
nanoparticles mucosal
4
mucosal translocation
4
translocation transport
4
transport glp-1
4
intestinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!