Technologies that can enable concentration of low-abundance biomarkers are essential for early diagnosis of diseases. In this study, an optoelectrokinetic technique, termed Rapid Electrokinetic Patterning (REP), was used to enable dynamic particle manipulation in bead-based bioassays. Various manipulation capabilities, such as micro/nanoparticle aggregation, translation, sorting and patterning, were developed. The technique allows for versatile multi-parameter (voltage, light intensity and frequency) based modulation and dynamically addressable manipulation with simple device fabrication. Signal enhancement of a bead-based bioassay was demonstrated using dilute biotin-fluorescein isothiocyanate (FITC) solutions mixed with streptavidin-conjugated particles and rapidly concentrated with the technique. As compared with a conventional ELISA reader, the REP-enabled detection achieved a minimal readout of 3.87 nM, which was a 100-fold improvement in sensitivity. The multi-functional platform provides an effective measure to enhance detection levels in more bead-based bioassays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4lc00661e | DOI Listing |
Micromachines (Basel)
December 2022
Department of Automation Engineering, National Formosa University, No. 64, Wenhua Rd., Huwei, Yunlin 632, Taiwan.
The rapid electrokinetic patterning (REP) technique has been demonstrated to enable dynamic particle manipulation in biomedical applications. Previous studies on REP have generally considered particles with a size less than 5 μm. In this study, a REP platform was used to manipulate polystyrene particles with a size of 3~11 μm in a microfluidic channel sandwiched between two ITO conductive glass plates.
View Article and Find Full Text PDFBiosens Bioelectron
December 2021
Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Core Facility Center, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:
Electrokinetic manipulation has been proven powerful in enhancing the sensing capability of general-purpose biochips. However, the close-form configuration of biochips and the required use of low electric conductivity limit their practicability. In this study, an open-well microfluidic system facilitated with coplanar-electrodes-enabled optoelectrokinetic concentration and magnetic particles were therefore developed to overcome these challenges.
View Article and Find Full Text PDFWe report a novel, to the best of our knowledge, method to rapidly characterize different kinds of cells and drug-treated cancer cells using a label-free biomarker of self-rotation in an optoelectrokinetics (OEK)-based microfluidic platform. OEK incorporates optics and electrokinetics into microfluidics, thereby offering a contact-free, label-free, and rapid approach to the cellular manipulation community. Self-rotational behaviors of four different kinds of cells were experimentally investigated by the frequency-sweeping of an AC bias potential in an optically induced nonuniform and irrotational electric field.
View Article and Find Full Text PDFLab Chip
January 2020
Department of Biomedical Engineering, National Cheng Kung University, Taiwan and Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan.
Bead-based immunosensors have intrigued the scientific community over the past decades due to their rapid and multiplexed capabilities in the detection of various biological targets. Nevertheless, their use in the detection of low-abundance analytes remains a continuing challenge because of their limited number of active enrichment approaches. To this end, our research presents a delicate microbead enrichment technique using an optoelectrokinetic platform, followed by the detection of dual biomarkers for the sensitive screening of an eye disease termed diabetic retinopathy (DR).
View Article and Find Full Text PDFBiosens Bioelectron
March 2017
Department of Biomedical Engineering, National Cheng Kung University, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Taiwan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!