Engineered protein polymers that display responsiveness to multiple stimuli are emerging as a promising class of soft material with unprecedented functionality. The remarkable advancement in genetic engineering and biosynthesis has created the opportunity for precise control over the amino acid sequence, size, structure and resulting functions of such biomimetic proteins. Herein, we describe the multi-stimuli-responsive characteristics of a resilin-mimetic protein, An16-resilin (An16), derived from the consensus sequence of resilin gene in the mosquito Anopheles gambiae. We demonstrate that An16 is an intrinsically disordered protein that displays unusual dual-phase thermal transition behavior along with responsiveness to pH, ion, light and humidity. Identifying the molecular mechanisms that allow An16 to sense and switch in response to varying environments furthers the ability to design intelligent biomacromolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2014.07.030DOI Listing

Publication Analysis

Top Keywords

resilin-mimetic protein
8
an16-resilin advanced
4
advanced multi-stimuli-responsive
4
multi-stimuli-responsive resilin-mimetic
4
protein
4
protein polymer
4
polymer engineered
4
engineered protein
4
protein polymers
4
polymers display
4

Similar Publications

Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood.

View Article and Find Full Text PDF

Engineered protein polymers that display responsiveness to multiple stimuli are emerging as a promising class of soft material with unprecedented functionality. The remarkable advancement in genetic engineering and biosynthesis has created the opportunity for precise control over the amino acid sequence, size, structure and resulting functions of such biomimetic proteins. Herein, we describe the multi-stimuli-responsive characteristics of a resilin-mimetic protein, An16-resilin (An16), derived from the consensus sequence of resilin gene in the mosquito Anopheles gambiae.

View Article and Find Full Text PDF

The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments.

View Article and Find Full Text PDF

In this investigation we report the synthesis of optically coupled hybrid architectures based on a new biomimetic fluorescent protein rec1-resilin and nanometer-scale gold nanoparticles (AuNPs) in a one-step method using a non-covalent mode of binding protocol. The presence of uniformly distributed fluorophore sequences, -Ser(Thr)-Tyr-Gly- along the molecular structure of rec1-resilin provides significant opportunity to synthesize fluorophore-modified AuNPs bioconjugates with unique photophysical properties. The detailed analyses of the AuNP-bioconjugates, synthesized under different experimental conditions using spectroscopic, microscopic and scattering techniques demonstrate the organizational pathways and the electronic and photophysical properties of the developed AuNP-rec1-resilin bioconjugates.

View Article and Find Full Text PDF

A pH-responsive interface derived from resilin-mimetic protein Rec1-resilin.

Biomaterials

May 2010

Ian Wark Research Institute, ARC Special Research Centre, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia.

In this investigation, for the first time we report the effects of pH on the molecular orientation, packing density, structural properties, adsorption characteristics and viscoelastic behaviour of resilin-mimetic protein rec1-resilin at the solid-liquid interface using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) spectroscopy. QCM-D and SPR data confirm that the binding ability of rec1-resilin on a substrate is strongly pH-dependent the protein packing density on a gold surface is calculated to be 4.45 x 10(13) per cm(2) at the isoelectric point (IEP approximately 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!