Congenital diaphragmatic hernia (CDH) is a common and severe birth defect. Despite its clinical significance, the genetic and developmental pathways underlying this disorder are incompletely understood. In this study, we report a catalog of variants detected by a whole exome sequencing study on 275 individuals with CDH. Predicted pathogenic variants in genes previously identified in either humans or mice with diaphragm defects are enriched in our CDH cohort compared with 120 size-matched random gene sets. This enrichment was absent in control populations. Variants in these critical genes can be found in up to 30.9% of individuals with CDH. In addition, we filtered variants by using genes derived from regions of recurrent copy number variations in CDH, expression profiles of the developing diaphragm, protein interaction networks expanded from the known CDH-causing genes, and prioritized genes with ultrarare and highly disruptive variants, in 11.3% of CDH patients. These strategies have identified several high priority genes and developmental pathways that likely contribute to the CDH phenotype. These data are valuable for comparison of candidate genes generated from whole exome sequencing of other CDH cohorts or multiplex kindreds and provide ideal candidates for further functional studies. Furthermore, we propose that these genes and pathways will enhance our understanding of the heterogeneous molecular etiology of CDH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151769PMC
http://dx.doi.org/10.1073/pnas.1412509111DOI Listing

Publication Analysis

Top Keywords

exome sequencing
12
cdh
9
congenital diaphragmatic
8
diaphragmatic hernia
8
developmental pathways
8
individuals cdh
8
genes
8
variants genes
8
variants
5
molecular pathogenesis
4

Similar Publications

DPYD genotype should be extended to rare variants: report on two cases of phenotype / genotype discrepancy.

Cancer Chemother Pharmacol

January 2025

Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.

The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.

View Article and Find Full Text PDF

Purpose: 10-15% of prostate cancers (PCa) harbor recurrent FOXA1 aberrations whereby the alteration type and the effect on the forkhead( FKH) domain impacts protein-function. We developed a FOXA1 classification system to inform clinical management.

Experimental Design: 5,014 PCa were examined using whole exome and transcriptome sequencing from the Caris database.

View Article and Find Full Text PDF

Whole-exome sequencing association study reveals genetic effects on tumor microenvironment components in nasopharyngeal carcinoma.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center - Zhongshan School of Medicine.

Nasopharyngeal carcinoma (NPC) presents a substantial clinical challenge due to the limited understanding of its genetic underpinnings. Here we conduct the largest scale whole-exome sequencing association study of NPC to date, encompassing 6,969 NPC cases and 7,100 controls. We unveil 3 germline genetic variants linked to NPC susceptibility: a common rs2276868 in RPL14, a rare rs5361 in SELE, and a common rs1050462 in HLA-B.

View Article and Find Full Text PDF

Chronic granulomatous disease (CGD) is a congenital disorder impairing phagocyte function, causing recurrent, life-threatening infections, and is rarely seen in adulthood. We present a 36-year-old male initially diagnosed with pneumonia. Bronchoalveolar lavage and blood cultures yielded complex, sputum cultures .

View Article and Find Full Text PDF

Genetic counselling in the era of next generation sequencing.

An Pediatr (Engl Ed)

December 2024

Grupo de investigación en enfermedades raras, Laboratorio de (epi)genética molecular, Instituto de Investigación Sanitaria Bioaraba, Hospital Universitario Araba, Vitoria-Gasteiz, Spain. Electronic address:

Advances in next-generation sequencing (NGS) technologies have made the detection of the molecular causes of paediatric diseases increasingly affordable, accessible and rapid. While exome sequencing and genome sequencing were until recently only available for research, they are now used in health care practice. The clinical application of NGS has raised many challenges in genetic counselling for families in terms of the interpretation of test results and incidental findings, as well as technical limitations in the event of inconclusive results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!