In order to gain insight into the ammonia-detoxification mechanisms in the brain and liver tissues, we have investigated the effects of hyperammonemia in rats, in vivo, on the activity levels of a number of ammonia- and glutamate-metabolizing enzymes in mitochondria and the cytosolic fractions of the cerebral cortex, cerebellum, hippocampus, striatum and liver. In general, the ammonia metabolizing enzymes - glutaminase, glutamine synthetase, glutamate dehydrogenase, AMP deaminase, adenosine deaminase, as well as aspartate aminotransferase and alanine aminotransferase - are differentially upregulated in various brain and liver regions of the hyperammonemic rats, indicating that divergent ammonia-detoxification mechanisms are involved in the various brain regions and liver in acute hyperammonemia.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871527313666140806155929DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
8
cortex cerebellum
8
cerebellum hippocampus
8
hippocampus striatum
8
striatum liver
8
ammonia-detoxification mechanisms
8
brain liver
8
liver
5
differential up-regulation
4
up-regulation ammonia
4

Similar Publications

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder ranging from mild cognitive impairment (MCI) to AD dementia. Abnormal cerebral perfusion alterations, influenced by amyloid-beta (Aβ) accumulations, have been implicated in cognitive decline along this spectrum.

Objective: This study investigates the relationship between cerebrospinal fluid (CSF) Aβ1-42 levels and regional cerebral blood flow (CBF) changes across the AD continuum using the Arterial Spin Labeling (ASL) technique.

View Article and Find Full Text PDF

Traditional decision-making models conceptualize humans as adaptive learners utilizing the differences between expected and actual rewards (prediction errors, PEs) to maximize outcomes, but rarely consider the influence of violations of emotional expectations (emotional PEs) and how it differs from reward PEs. Here, we conducted a fMRI experiment (n = 43) using a modified Ultimatum Game to examine how reward and emotional PEs affect punishment decisions in terms of rejecting unfair offers. Our results revealed that reward relative to emotional PEs exerted a stronger prediction to punishment decisions.

View Article and Find Full Text PDF

Effects of noise and metabolic cost on cortical task representations.

Elife

January 2025

Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.

Cognitive flexibility requires both the encoding of task-relevant and the ignoring of task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well understood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we study how task performance and biological constraints jointly determine the coding of relevant and irrelevant stimuli in neural circuits.

View Article and Find Full Text PDF

Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex.

View Article and Find Full Text PDF

The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (EN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!