Many hypotheses can be encountered explaining the mechanism of action of antifreeze proteins. One widespread theory postulates that the similarity of structural properties of solvation water of antifreeze proteins to ice is crucial to the antifreeze activity of these agents. In order to investigate this problem, the structural properties of solvation water of the hyperactive antifreeze protein from Choristoneura fumiferana were analyzed and compared with the properties of solvation water present at the surface of ice. The most striking observations concerned the temperature dependence of changes in water structure. In the case of solvation water of the ice-binding plane, the difference between the overall structural ordering of solvation water and bulk water diminished with increasing temperature; in the case of solvation water of the rest of the protein, the trend was opposite. In this respect, the solvation water of the ice-binding plane roughly resembled the hydration layer of ice. Simultaneously, the whole solvation shell of the protein displayed some features that are typical for solvation shells of many other proteins and are not encountered in the solvation water of ice. In the first place, this is an increase in density of water around the protein. The opposite is true for the solvation water of ice - it is less dense than bulk water. Therefore, even though the structure of solvation water of ice-binding plane and the structure of solvation water of ice seem to share some similarities, densitywise they differ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4891810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!