Mesenteric artery endothelium expresses both small (SK3)- and intermediate (IK1)-conductance Ca(2+)-activated K(+) (KCa) channels whose activity modulates vascular tone via endothelium-dependent hyperpolarization (EDH). Two other major endothelium-dependent vasodilation pathways utilize nitric oxide (NO) and prostacyclin (PGI2). To examine how ovariectomy (ovx) affects the basal activity and acetylcholine (ACh)-induced activity of each of these three pathways to vasorelaxation, we used wire myograph and electrophysiological recordings. The results from functional studies using isolated murine mesenteric arteries show that ovx reduces ACh-induced endothelium-dependent vasodilation due to decreased EDH and NO contributions, although the contribution of PGI2 is upregulated. Both endothelial SK3 and IK1 channels are functionally coupled to TRPV4 (transient receptor potential, vanilloid type 4) channels: the activation of TRPV4 channels activates SK3 and IK1 channels, leading to EDH-mediated vascular relaxation. The decreased EDH-mediated vasorelaxation in ovx vessels is due to reduced SK3 channel contribution to the pathway. Further, whole-cell recordings using dispersed endothelial cells also show reduced SK3 current density in ovx endothelial cells. Consequently, activation of TRPV4 channels induces smaller changes in whole-cell current density. Thus, ovariectomy leads to a reduction in endothelial SK3 channel activity thereby reducing the SK3 contribution to EDH vasorelaxation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126749PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104686PLOS

Publication Analysis

Top Keywords

endothelial sk3
12
sk3 channel
12
channel activity
8
murine mesenteric
8
mesenteric arteries
8
endothelium-dependent vasodilation
8
sk3 ik1
8
ik1 channels
8
activation trpv4
8
trpv4 channels
8

Similar Publications

Cooling causes cutaneous dilatation to restrain cold-induced constriction and prevent tissue injury. Cooling increases communication through myoendothelial gap junctions (MEGJs), thereby increasing endothelium-derived hyperpolarization (EDH)-type dilatation. EDH is initiated by calcium-activated potassium channels (K ) activated by endothelial stimuli or muscle-derived mediators traversing MEGJs (myoendothelial feedback).

View Article and Find Full Text PDF

Endothelial cells (ECs) line the lumen of all blood vessels and regulate functions, including contractility. Physiological stimuli, such as acetylcholine (ACh) and intravascular flow, activate transient receptor potential vanilloid 4 (TRPV4) channels, which stimulate small (SK3)- and intermediate (IK)-conductance Ca-activated potassium channels in ECs to produce vasodilation. Whether physiological vasodilators also modulate the surface abundance of these ion channels in ECs to elicit functional responses is unclear.

View Article and Find Full Text PDF

The small conductance calcium-activated potassium channel (KCa2.3) has long been recognized for its role in mediating vasorelaxation through the endothelium-derived hyperpolarization (EDH) response. Histone deacetylases (HDACs) have been implicated as potential modulators of blood pressure and histone deacetylase inhibitors (HDACi) are being explored as therapeutics for hypertension.

View Article and Find Full Text PDF

The modulation of SK3 ion channels can be efficiently and selectively achieved by using the amphiphilic compound Ohmline (a glyco-glycero-ether-lipid). We report herein a series of Ohmline analogues featuring the replacement of one ether function by a thioether function located at the same position or shifted close to its initial position. The variation of the lipid chain length and the preparation of two analogues featuring either one sulfoxide or one sulfone moiety complete this series.

View Article and Find Full Text PDF

Differential modulation of SK channel subtypes by phosphorylation.

Cell Calcium

March 2021

Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA. Electronic address:

Small-conductance Ca-activated K (SK) channels are voltage-independent and are activated by Ca binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!