Detection of a novel mechanism of acousto-optic modulation of incoherent light.

PLoS One

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America.

Published: April 2015

A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126715PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104268PLOS

Publication Analysis

Top Keywords

incoherent light
12
density variations
12
light
10
acoustic modulation
8
light incoherent
8
source detected
8
modulation intensity
8
light source
8
observed patterns
8
modulation
5

Similar Publications

Optical neural networks are considered next-generation physical implementations of artificial neural networks, but their capabilities are limited by on-chip integration scale and requirement for coherent light sources. This study proposes a spectral convolutional neural network (SCNN) with matter meta-imaging. The optical convolutional layer is implemented by integrating very large-scale and pixel-aligned spectral filters on CMOS image sensor.

View Article and Find Full Text PDF

Optical approaches have made great strides towards the goal of high-speed, energy-efficient computing necessary for modern deep learning and AI applications. Read-in and read-out of data, however, limit the overall performance of existing approaches. This study introduces a multilayer optoelectronic computing framework that alternates between optical and optoelectronic layers to implement matrix-vector multiplications and rectified linear functions, respectively.

View Article and Find Full Text PDF

Photochemical initiation of polariton-mediated exciton propagation.

Nanophotonics

June 2024

Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.

Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity.

View Article and Find Full Text PDF

The orbital angular momentum (OAM) of beams provides an additional degree of freedom and has been applied in various scientific and technological fields. Accurate and quantitative measurement of intensity distributions across different OAM modes, referred to as the OAM spectrum of a beam, is crucial. Here, we propose a straightforward and efficient experimental setup for measuring the OAM spectrum of a randomly fluctuating beam.

View Article and Find Full Text PDF

Background: The aim of the study was to capture images that form on the human retina after the simulated implantation of an intraocular lens (IOL). White light was used rather than the commonly used near-infrared light, which is unsuitable for the examination of diffractive IOLs. For this purpose, a special optical setup was developed to investigate the influence of the IOL design on two-dimensional retinal images .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!