Neutron inelastic scattering has been used to probe the spin dynamics of the quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu(2)V(2)O(7). Well-defined spin waves are observed at all energies and wave vectors, allowing us to determine the parameters of the Hamiltonian of the system. The data are found to be in excellent overall agreement with a minimal model that includes a nearest-neighbor Heisenberg exchange J = 8.22(2) meV and a Dzyaloshinskii-Moriya interaction (DMI) D = 1.5(1) meV. The large DMI term revealed by our study is broadly consistent with the model originally used to explain the magnon Hall effect in this compound [Onose et al., Science 329, 297 (2010) and Ideue et al., Phys. Rev. B 85, 134411 (2012)]. However, our ratio of D/J = 0.18(1) is roughly half of their value, and is much larger than those found in other theoretical studies [Xiang et al., Phys. Rev. B 83, 174402 (2011) and Mook et al., Phys. Rev. B 89,134409 (2014)].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.047202 | DOI Listing |
Phys Life Rev
January 2025
CHU Sainte-Justine Azrieli Research Center, Department of Psychiatry, Université de Montréal, Montréal, Quebec, Canada; Division of Social and Transcultural Psychiatry, McGill University, Montréal, Quebec, Canada; Mila - Quebec AI Institute, Université de Montréal, Montréal, Quebec, Canada. Electronic address:
Phys Life Rev
January 2025
Cadi Ayyad University, Faculty of Sciences Semlalia, LMDP-UMMISCO, Morocco. Electronic address:
Phys Med Biol
January 2025
Radiotherapy and Radiation Dosimetry group, National Physical Laboratory, Hampton Road, Middlesex, Teddington, TW11 0LW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Internationally, reference dosimetry for clinical proton beams largely follows the guidelines published by the International Atomic Energy Agency (IAEA TRS-398 Rev. 1, 2024). This approach yields a relative standard uncertainty of 1.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
1Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan;
This is a recollection of my scientific trajectory. When I look back, I consider myself to be very fortunate for being able to do something I love and on topics of my own will. I am not a competitive person and tend to shy away from the limelight.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
1Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA; email:
Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!