Probing electric and magnetic vacuum fluctuations with quantum dots.

Phys Rev Lett

Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.

Published: July 2014

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this Letter we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.043601DOI Listing

Publication Analysis

Top Keywords

electric magnetic
16
quantum dots
16
probing electric
4
magnetic
4
magnetic vacuum
4
vacuum fluctuations
4
quantum
4
fluctuations quantum
4
dots
4
dots electromagnetic-vacuum-field
4

Similar Publications

Tunable Spin and Orbital Torques in Cu-Based Magnetic Heterostructures.

Nano Lett

January 2025

Institut de Ciència de Materials de Barcelona, Campus de la UAB, Bellaterra 08193, Spain.

Current-induced torques originating from earth-abundant 3d elements offer a promising avenue for low-cost and sustainable spintronic memory and logic applications. Recently, orbital currents─transverse orbital angular momentum flow in response to an electric field─have been in the spotlight since they allow current-induced torque generation from 3d transition metals. Here, we report a comprehensive study of the current-induced spin and orbital torques in Cu-based magnetic heterostructures.

View Article and Find Full Text PDF

Bayesian Optimization Of NeuroStimulation (BOONStim).

Brain Stimul

January 2025

Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

View Article and Find Full Text PDF

Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.

View Article and Find Full Text PDF

Quantum Analog of Landau-Lifshitz-Gilbert Dynamics.

Phys Rev Lett

December 2024

Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.

The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.

View Article and Find Full Text PDF

Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!