A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.042502DOI Listing

Publication Analysis

Top Keywords

long-lived isomer
8
monopole-driven shell
4
shell evolution
4
evolution doubly
4
doubly magic
4
magic nucleus
4
nucleus 132sn
4
132sn explored
4
explored long-lived
4
isomer 126pd
4

Similar Publications

Modulating room-temperature phosphorescence of D-π-A luminogens via methyl substitution, positional isomerism, and host-guest doping.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

Organic room-temperature phosphorescence (RTP) luminogens have showed significant potential in the fields of diagnostics, sensing, and information encryption. However, it is difficult to achieve high RTP yield (Φ) and long RTP lifetime simultaneously. By methyl substitution, positional isomerism, and host-guest doping, three new D-π-A type luminogens named as TBTDA, 2M-TBTDA, and 3M-TBTDA were designed and synthesized, whose RTP properties were tuned and optimized.

View Article and Find Full Text PDF

Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins.

View Article and Find Full Text PDF

Sergeant-and-Soldier Effect in an Organic Room-Temperature Phosphorescent Host-Guest System.

Adv Mater

December 2024

Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China.

Article Synopsis
  • Host-guest systems improve organic room temperature phosphorescence (RTP), but understanding their interactions is challenging due to complexity and lack of visualization techniques.
  • A new RTP system was created by doping a guest molecule (TPP-4C-BI) into a host matrix (TPP-4C-Cz), resulting in ten times higher phosphorescence yields than using pure compounds.
  • The study discovered a "sergeant-and-soldier" effect where guest molecules influence host packing and identified a mechanism for energy transfer that enhances RTP efficiency, leading to better design strategies for phosphorescent materials.
View Article and Find Full Text PDF

In this work, the impact of protonation on the photoisomerization ( → ) and reversion ( → ) of three pyridine-based azo dyes () is investigated by using a combination of transient absorption spectroscopy and time-dependent density functional theory computed difference spectra. The photophysical behaviors of the dyes are altered by the addition of one or two protons. Protonation of basic pyridine nitrogens results in an ultrafast accelerated reversion mechanism after photoisomerization, while protonation of azo bond nitrogens restricts isomer formation entirely.

View Article and Find Full Text PDF

Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!