A sensitive electrochemical lead ion (Pb(2+)) sensor based on carboxylic acid group functionalized multi-walled carbon nanotubes (MWNTs-COOH) and direct electrodeposited gold nanoparticles (GNPs) was developed for Pb(2+) detection. The DNA capture probe was self-assembled onto the surface of the modified electrode for hybridizing with the guanine-rich (G-rich) aptamer probe and for forming the DNA double helix structure. When Pb(2+) was added in, the DNA duplex unwound and formed a stabilized G-quadruplex (G4) due to the Pb(2+)-induced G-rich DNA conformation. Also, methylene blue (MB) was selected as the G4-binding indicator. Compared with previous Pb(2+) sensors, the proposed sensor had better sensitivity, because the modified MWCNTs/GNPs could provide a large surface area and good charge-transport capacity to dramatically improve the DNA attachment quantity and sensor performance. The sensor could detect Pb(2+) in a range from 5.0 × 10(-11) to 1.0 × 10(-14) M, with a detection of 4.3 × 10(-15) M.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an00874jDOI Listing

Publication Analysis

Top Keywords

sensitive electrochemical
8
pb2+-induced g-rich
8
g-rich dna
8
dna conformation
8
dna
6
sensor
5
pb2+
5
highly sensitive
4
electrochemical sensor
4
sensor mwcnts/gnps-modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!