Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106062 | PMC |
http://dx.doi.org/10.1155/2014/384342 | DOI Listing |
Adv Sci (Weinh)
January 2025
Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.
View Article and Find Full Text PDFCerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.
View Article and Find Full Text PDFClin Neuropharmacol
January 2025
Medical Biochemistry, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey.
Objectives: Our aim was to evaluate the comparative effects of sertraline and vortioxetine against stress-induced brain injury in rats.
Methods: The rats were assigned to a nonstress group (NSG), stress-treated control (StC), sertraline + stress (SSt), and vortioxetine + stress (VSt) groups. Sertraline and vortioxetine (10 mg/kg) were given orally by gavage to the SSt and VSt groups.
Chin J Integr Med
January 2025
Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.
Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).
Cells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!