Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD), the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity, and chronic local inflammation leading to substitution of myofibers by connective and adipose tissue. DMD patients suffer from continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. Autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates, and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels, it can be detrimental and contribute to muscle wasting; at low levels, it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular level, the Akt axis is one of the key dysregulated pathways, although the molecular events are not completely understood. The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signaling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109521 | PMC |
http://dx.doi.org/10.3389/fnagi.2014.00188 | DOI Listing |
Cancer Med
January 2025
The Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah, USA.
Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).
Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.
Physiother Res Int
January 2025
Department of Biomedical Engineering, University of Engineering and Technology (UET) Lahore, Narowal Campus, Narowal, Pakistan.
Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.
View Article and Find Full Text PDFSarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.
View Article and Find Full Text PDFFront Pharmacol
December 2024
College of Pharmacy, Jinan University, Guangzhou, China.
Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.
View Article and Find Full Text PDFFront Physiol
December 2024
Raw Materials and Optimalization, Nofima AS, Ås, Norway.
Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!