A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PAS-LuxR transcriptional control of filipin biosynthesis in S. avermitilis. | LitMetric

PAS-LuxR transcriptional control of filipin biosynthesis in S. avermitilis.

Appl Microbiol Biotechnol

Area de Microbiología, Facultad de Biología, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.

Published: November 2014

The DNA region encoding the filipin gene cluster in Streptomyces avermitilis (pte) contains a PAS-LuxR regulatory gene, pteF, orthologue to pimM, the final pathway-specific positive regulatory protein of pimaricin biosynthesis in Streptomyces natalensis. Gene replacement of the gene from S. avermitilis chromosome resulted in a severe loss of filipin production and delayed spore formation in comparison to that of the wild-type strain, suggesting that it acts as a positive regulator of filipin biosynthesis and that it may also have a role in sporulation. Complementation of the mutant with a single copy of the gene integrated into the chromosome restored wild-type phenotypes. Heterologous complementation with the regulatory counterpart from S. natalensis also restored parental phenotypes. Gene expression analyses in S. avermitilis wild-type and the mutant by reverse transcription-quantitative polymerase chain reaction of the filipin gene cluster suggested the targets for the regulatory protein. Transcription start points of all the genes of the cluster were studied by 5'-rapid amplification of complementary DNA ends. Transcription start point analysis of the pteF gene revealed that the annotated sequence in the databases is incorrect. Confirmation of target promoters was performed by in silico search of binding sites among identified promoters and the binding of the orthologous regulator for pimaricin biosynthesis PimM to gene promoters by electrophoretic mobility shift assays. Precise binding regions were investigated by DNAse I protection studies. Our results indicate that PteF activates the transcription from two promoters of polyketide synthase genes directly, and indirectly of other genes of the cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-014-5998-7DOI Listing

Publication Analysis

Top Keywords

gene
9
filipin biosynthesis
8
filipin gene
8
gene cluster
8
regulatory protein
8
pimaricin biosynthesis
8
transcription start
8
genes cluster
8
filipin
5
pas-luxr transcriptional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!