A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

Sci Rep

1] Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 [2] National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 [3] Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, Singapore 639673.

Published: August 2014

Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126000PMC
http://dx.doi.org/10.1038/srep05992DOI Listing

Publication Analysis

Top Keywords

neutral atoms
12
gauge fields
8
small size
8
magnetic flux
8
atoms
7
solenoidal synthetic
4
synthetic field
4
field non-abelian
4
non-abelian aharonov-bohm
4
aharonov-bohm effects
4

Similar Publications

A method to determine electron temperature within a plasma by the spectral analysis of atomic tungsten emission has been explored. The technique was applied to a post-discharge region immediately following a high voltage nanosecond pulsed discharge in air with tungsten electrodes. Atomic tungsten lines are readily observed in the weak emission spectrum within the post-discharge region for many microseconds.

View Article and Find Full Text PDF

Aim: The aim of this study was to make a laboratory assessment of pH influence on the kinetics of the release of nickel ions in artificial saliva.

Methods And Material: In this study, 15 basic orthodontic appliances are immersed in 15 polyethylene tubes each containing 40 ml of artificial saliva. Tubes were divided into three sub-groups of 5 tubes depending on the pH: pH 5, pH 7 and pH 8.

View Article and Find Full Text PDF

B0AT1 (SLC6A19) is a major sodium-coupled neutral amino acid transporter that relies on angiotensin converting enzyme 2 (ACE2) or collectrin for membrane trafficking. Despite its significant role in disorders associated with amino acid metabolism, there is a deficit of comprehensive structure-function understanding of B0AT1 in lipid environment. Herein, we have employed molecular dynamics (MD) simulations to explore the architectural characteristics of B0AT1 in two distinct environments: a simplified POPC bilayer and a complex lipid system replicating the native membrane composition.

View Article and Find Full Text PDF

Efficient Electrosynthesis of Hydrogen Peroxide Enabled by a Hierarchical Hollow RE-P-O (RE = Sm, La, Gd) Architecture with Open Channels.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.

The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for the production of HO; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e selectivity, exceeding 93% across a wide potential range of 0.

View Article and Find Full Text PDF

Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in Fenton-like reactions.

Nat Commun

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

Single-atom catalysts (SACs) have been increasingly acknowledged for their performance in sustainable Fenton-like catalysis. However, SACs face a trade-off between activity and stability in peroxymonosulfate (PMS)-based systems. Herein, we design a nano-island encapsulated single cobalt atom (Co-ZnO) catalyst to enhance the activity and stability of PMS activation for contaminant degradation via an "island-sea" synergistic effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!