The complete genome sequence of a new tomato-blistering mosaic virus (ToBMV) isolate was determined. This tymovirus isolate was first described infecting tobacco during the 1980s, but it also infects other Solanaceae members experimentally. The genome has 6,257 nucleotides and shares 88% nucleotide identity with the ToBMV isolated from tomato.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125764PMC
http://dx.doi.org/10.1128/genomeA.00701-14DOI Listing

Publication Analysis

Top Keywords

complete genome
8
genome sequence
8
tomato-blistering mosaic
8
mosaic virus
8
sequence tobacco-infecting
4
tobacco-infecting tomato-blistering
4
virus complete
4
sequence tomato-blistering
4
virus tobmv
4
tobmv isolate
4

Similar Publications

The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.

View Article and Find Full Text PDF

Spatial transcriptomics enhances our understanding of cellular organization by mapping gene expression data to precise tissue locations. Here, we present a protocol for using weighted ensemble method for spatial transcriptomics (WEST), which uses ensemble techniques to boost the robustness and accuracy of existing algorithms. We describe steps for preprocessing data, obtaining embeddings from individual algorithms, and ensemble integrating all embeddings as a similarity matrix.

View Article and Find Full Text PDF

Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera.

View Article and Find Full Text PDF

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

Complete genome sequence of LLZ14, a nitrogen-fixing and plant growth-promoting bacterium.

Microbiol Resour Announc

January 2025

Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.

In this study, we present the complete genome of LLZ14, a nodule-forming bacterium isolated from root nodules with high plant growth-promoting abilities. This genome contains genes predicted to be involved in plant stress tolerance and growth promotion, including auxin production, phosphatase, and 1-aminocyclopropane-1-carboxylate deaminase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!