Pannexin 1 (panx1) is a large-pore membrane channel expressed in many tissues of mammals, including neurons and glial cells. Panx1 channels are highly permeable to calcium and adenosine triphosphatase (ATP); on the other hand, they can be opened by ATP and glutamate, two crucial molecules for acute and chronic pain signaling in the spinal cord dorsal horn, thus suggesting that panx1 could be a key component for the generation of central sensitization during persistent pain. In this study, we examined the effect of three panx1 blockers, namely, 10panx peptide, carbenoxolone, and probenecid, on C-reflex wind-up activity and mechanical nociceptive behavior in a spared nerve injury neuropathic rat model involving sural nerve transection. In addition, the expression of panx1 protein in the dorsal horn of the ipsilateral lumbar spinal cord was measured in sural nerve-transected and sham-operated control rats. Sural nerve transection resulted in a lower threshold for C-reflex activation by electric stimulation of the injured hindpaw, together with persistent mechanical hypersensitivity to pressure stimuli applied to the paw. Intrathecal administration of the panx1 blockers significantly depressed the spinal C-reflex wind-up activity in both neuropathic and sham control rats, and decreased mechanical hyperalgesia in neuropathic rats without affecting the nociceptive threshold in sham animals. Western blotting showed that panx1 was similarly expressed in the dorsal horn of lumbar spinal cord from neuropathic and sham rats. The present results constitute the first evidence that panx1 channels play a significant role in the mechanisms underlying central sensitization in neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pain.2014.07.024 | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA.
Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.
The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.
View Article and Find Full Text PDFElife
January 2025
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Canada.
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!