Reduction of pyramidal and immature hippocampal neurons in pediatric simian immunodeficiency virus infection.

Neuroreport

Departments of aPhysiology and Biophysics bPsychiatry, College of Medicine, Howard University cDepertment of Anatomy, Howard University School of Medicine, Washington, District of Columbia dCalifornia National Primate Research Center, University of California Davis, Davis, California eDepartment of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.

Published: September 2014

Pediatric HIV infection remains a global health crisis with a worldwide infection rate of 2.5 million (WHO, Geneva Switzerland, 2009). Children are much more susceptible to HIV-1 neurological impairments compared with adults, which is exacerbated by coinfections. A major obstacle in pediatric HIV research is sample access. The proposed studies take advantage of ongoing pediatric simian immunodeficiency virus (SIV) pathogenesis and vaccine studies to test the hypothesis that pediatric SIV infection diminishes neuronal populations and neurogenesis in the hippocampus. Newborn rhesus macaques (Macaca mulatta) that received intravenous inoculation of highly virulent SIVmac251 (n=3) or vehicle (control n=4) were used in this study. After a 6-18-week survival time, the animals were euthanized and the brains prepared for quantitative histopathological analysis. Systematic sections through the hippocampus were either Nissl stained or immunostained for doublecortin (DCX+), a putative marker of immature neurons. Using design-based stereology, we report a 42% reduction in the pyramidal neuron population of the CA1, CA2, and CA3 fields of the hippocampus (P<0.05) in SIV-infected infants. The DCX+ neuronal population was also significantly reduced within the dentate gyrus of the hippocampus. The loss of hippocampal neurons and neurogenic capacity may contribute to the rapid neurocognitive decline associated with pediatric HIV infection. These data suggest that pediatric SIV infection, which leads to significant neuronal loss in the hippocampus within 3 months, closely models a subset of pediatric HIV infections with rapid progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128914PMC
http://dx.doi.org/10.1097/WNR.0000000000000148DOI Listing

Publication Analysis

Top Keywords

reduction pyramidal
8
pediatric simian
8
simian immunodeficiency
8
immunodeficiency virus
8
pediatric hiv
8
pediatric
5
pyramidal immature
4
immature hippocampal
4
hippocampal neurons
4
neurons pediatric
4

Similar Publications

Potato late blight leaf detection in complex environments.

Sci Rep

December 2024

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China.

Potato late blight is a common disease affecting crops worldwide. To help detect this disease in complex environments, an improved YOLOv5 algorithm is proposed. First, ShuffleNetV2 is used as the backbone network to reduce the number of parameters and computational load, making the model more lightweight.

View Article and Find Full Text PDF

High-Efficiency Fluorescent-Coupled Optical Fiber Passive Tactile Sensor with Integrated Microlens for Surface Texture and Roughness Detection.

ACS Appl Mater Interfaces

December 2024

College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.

Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.

View Article and Find Full Text PDF

The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe2(CO)6] fragment and M-salen complexes (salen = N,N'-bis(salicylidene)ethylenediamine) (M = Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R = Fe2(CO)6(μ-SCH2)2COCH2O)]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.

View Article and Find Full Text PDF

The apical dendrites of human L2/3 pyramidal neurons are capable of performing XOR computation by modulating the amplitude of dendritic calcium action potentials (dCaAPs) mediated by calcium ions. What influences this particular function? There is still no answer to this question. In this study, we employed a rational and feasible reduction method to successfully derive simplified models of human L2/3 pyramidal neurons while preserving their detailed functional properties.

View Article and Find Full Text PDF

A lightweight MHDI-DETR model for detecting grape leaf diseases.

Front Plant Sci

December 2024

College of Rail Intelligent Engineering, Dalian Jiaotong University, Dalian, China.

Accurate diagnosis of grape leaf diseases is critical in agricultural production, yet existing detection techniques face challenges in achieving model lightweighting while ensuring high accuracy. In this study, a real-time, end-to-end, lightweight grape leaf disease detection model, MHDI-DETR, based on an improved RT-DETR architecture, is presented to address these challenges. The original residual backbone network was improved using the MobileNetv4 network, significantly reducing the model's computational requirements and complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!