We investigated how the intrinsic sequence-dependent properties probed via the phosphate linkages (BI ↔ BII equilibrium) influence the preferred shape of free DNA, and how this affects the nucleosome formation. First, this exploits NMR solution studies of four B-DNA dodecamers that together cover 39 base pairs of the 5' half of the sequence 601, of special interest for nucleosome formation. The results validate our previous prediction of a systematic, general sequence effect on the intrinsic backbone BII propensities. NMR provides new evidence that the backbone behavior is intimately coupled to the minor groove width. Second, application of the backbone behavior predictions to the full sequence 601 and other relevant sequences demonstrates that alternation of intrinsic low and high BII propensities, coupled to intrinsic narrow and wide minor grooves, largely coincides with the sinusoidal variations of the DNA minor groove width observed in crystallographic structures of the nucleosome. This correspondence is much poorer with low affinity sequences. Overall, the results indicate that nucleosome formation involves an indirect readout process implicating pre-existing DNA minor groove conformations. It also illustrates how the prediction of the intrinsic structural DNA behavior offers a powerful framework to gain explanatory insight on how proteins read DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi500504y | DOI Listing |
J Comput Chem
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey. Electronic address:
This study investigated the binding mechanism of taxifolin (TA), daidzein (DA), and S-equol (SQ) flavonoids with fish sperm double helix DNA (dsDNA) under the simulated physiological pH condition using UV-Vis and photoluminescence spectroscopy, as well as viscometric methods. Binding constants (K) for the flavonoids to dsDNA were determined as 1.8 × 10 M for SQ, 1.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Université de Tours - Faculté de Médecine de Tours - CHRU Tours, Hôpital Trousseau, Service d'Orthopédie Traumatologie, Tours, France. Electronic address:
Purpose: The purpose of this study was to determine the clinical value of diagnostic tests for the long head of the biceps tendon (LHBT) injuries in the setting of a Patte stage 1 supraspinatus tendon rupture.
Methods: This was a prospective cohort multicenter study of 361 patients aged 30 to 80 years with Patte stage 1 distal supraspinatus tendon rupture. The LHBT was assessed clinically by palpation of the bicipital groove, the speed test, the Yergason test and the Kibler test.
Microsc Res Tech
January 2025
Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkey.
Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!