"Near perfect" amphiphilic conetwork based on end-group cross-linking of polydimethylsiloxane triblock copolymer via atom transfer radical polymerization.

ACS Appl Mater Interfaces

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, P. R. China.

Published: September 2014

Novel amphiphilic conetworks (APCNs) with uniform channel size were synthesized through end-cross-linking of well-defined amphiphilic triblock copolymers via atom transfer radical polymerization (ATRP). A new ditelechelic polydimethylsiloxane macroinitiator was synthesized to initiate the polymerization of N,N-dimethylacrylamide. The resulting triblock copolymers show well-defined molecular weight with narrow polydisperisty, which are telechelic modified by allylamine and fully cross-linked with polyhydrosiloxanes through hydrosilylation. Transmission electron microscopy shows that the APCN has the behavior of microphase separation with small channel size and uniform phase domain. The resulting APCNs with idealized microstructure exhibit a combination of excellent properties, i.e., superhigh mechanical strength (4 ± 1 MPa) and elongation ratio (175 ± 25%), outstanding oxygen permeability (350 ± 150 barrers), a high water uptake property, and excellent biocompatibility, indicating that in this way, "near perfect" networks are obtained. These results are better than those reported in the literature, suggesting a promising semipermeable barrier for islet encapsulation in relative biomaterial fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5037252DOI Listing

Publication Analysis

Top Keywords

"near perfect"
8
atom transfer
8
transfer radical
8
radical polymerization
8
channel size
8
triblock copolymers
8
perfect" amphiphilic
4
amphiphilic conetwork
4
conetwork based
4
based end-group
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!