Microdroplet evaporation with a forced pinned contact line.

Langmuir

Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816, United States.

Published: September 2014

Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (i) controlling a droplet's contact line dynamics during evaporation to identifying how the contact line influences evaporative heat transfer and (ii) validating numerical simulations with experimental data. Droplets are formed on the polymer surface using a bottom-up methodology, where a computer-controlled syringe pump feeds water through a 200 μm diameter fluid channel within the heated polymer substrate. This methodology facilitates precise control of the droplet's growth rate, size, and inlet temperature. In addition to this microchannel supply line, the substrate surfaces are laser patterned with a moatlike trench around the fluid-channel outlet, adding additional control of the droplet's contact line motion, area, and contact angle. In comparison to evaporation on a nonpatterned polymer surface, the laser patterned trench increases contact line pinning time by ∼60% of the droplet's lifetime. Numerical simulations of diffusion controlled evaporation are compared the experimental data with a pinned contact line. These diffusion based simulations consistently over predict the droplet's evaporation rate. In efforts to improve this model, a temperature distribution along the droplet's liquid-vapor interface is imposed to account for the concentration distribution of saturated vapor along the interface, which yields improved predictions within 2-4% of the experimental data throughout the droplet's lifetime on heated substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la501770gDOI Listing

Publication Analysis

Top Keywords

laser patterned
12
experimental data
12
microdroplet evaporation
8
pinned contact
8
droplet's contact
8
numerical simulations
8
polymer surface
8
control droplet's
8
droplet's lifetime
8
contact
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!