In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery.

Int J Pharm

Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal; Centre for Research in Bimedicine (CEBIMED), Fernando Pessoa University, Praça 9 de Abril, 349, P-4249-004 Porto, Portugal; Institute of Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila-Real, Portugal. Electronic address:

Published: October 2014

Resveratrol is a potent anticancer. However, because of its low half-life (<0.25 h) the molecule is difficult to achieve the therapeutic concentration at the site of action. The aim of this work was to check the brain targeting ability of glyceryl behenate-based solid lipid nanoparticles (SLN) for resveratrol. SLN were prepared by solvent evaporation technique employing high speed homogenization followed by ultrasonication. SLN were designed at varying drug-lipid ratios (1:5, 1:9, 1:10, 1:11, 1:12 and 1:15) using Tween 80 or a combination of Tween 80 and polyvinyl alcohol (PVA) as surfactants. The mean particle size and zeta potential of the optimized formulation (drug-lipid ratio of 1:10) were 248.30 ± 3.80nm and -25.49 ± 0.49mV, respectively. The particle size and the encapsulation efficiency (EE) increased when varying the drug-lipid ratio from 1:5 to 1:15. Scanning electron microscopic (SEM) analysis showed that SLN were spherical in shape and had a smooth surface. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed that the matrix of drug-loaded SLN was in disordered crystalline phase. The in vitro release study in phosphate buffer pH 7.4 followed a sustained release pattern. The drug release data was found to fit best into Higuchi kinetic model suggesting the diffusion controlled mechanism of drug release. The cytotoxicity assay (MAT) showed that SLN were equally effective (P<0.5) as free resveratrol, as an anti-tumor agent. The in vivo biodistribution study using Wistar rats demonstrated that SLN could significantly (P<0.001) increase the brain concentration of resveratrol (17.28 ± 0.6344 μg/g) as compared to free resveratrol (3.45 ± 0.3961 μg/g). The results showed that our resveratrol-loaded SLN serve as promising therapeutic systems to treat neoplastic diseases located in the brain tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2014.08.003DOI Listing

Publication Analysis

Top Keywords

vivo pharmacokinetics
4
pharmacokinetics biodistribution
4
biodistribution resveratrol-loaded
4
resveratrol-loaded solid
4
solid lipid
4
lipid nanoparticles
4
nanoparticles brain
4
brain delivery
4
delivery resveratrol
4
resveratrol potent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!