Fluorescent immunohistochemistry on the cardiac conduction system in whole mount mouse heart preparations demonstrates a particularly dense and complex network of nerve fibres and cardiomyocytes which are positive to the hyperpolarization activated cyclic nucleotide-gated potassium channel 4 (HCN4-positive cardiomyocytes) in the sinoatrial node region and adjacent areas around the root of right cranial vein. The present study was designed to investigate the morphologic and histochemical pattern of nerve fibres and HCN4-positive cardiomyocytes using fluorescent techniques and/or electron microscopy. Adrenergic and cholinergic nerve fibres together with HCN4-positive cardiomyocytes were identified using primary antibodies for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), and the HCN4 channel respectively. Amid HCN4-positive cardiomyocytes, fluorescence and electron microscopy data demonstrated a dense distribution of nerve fibres immunoreactive for ChAT and TH. In addition, novel electron microscopy data revealed that the mouse sinoatrial node contained exclusively unmyelinated nerve fibres, in which the majority of axons possess varicosities with clear mediatory vesicles that can be classified as cholinergic. Synapses occurred without any clear terminal connection with the effector cell, i.e. these synapes were of "en passant" type. In general, the morphologic pattern of innervation of mouse HCN4-positive cardiomyocytes identified using electron microscopy corresponds well to the dense network of nerve fibres demonstrated by fluorescent immunohistochemistry in mouse sinoatrial node and adjacent areas. The complex and extraordinarily dense innervation of HCN4-positive cardiomyocytes in mouse sinoatrial node underpins the importance of neural regulation for the cardiac conduction system. Based on the present observations, it is concluded that the occurrence of numerous nerve fibres nearby atrial cardiomyocytes serves as a novel reliable extracellular criterion for discrimination of SA nodal cardiomyocytes using electron microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2014.07.016DOI Listing

Publication Analysis

Top Keywords

nerve fibres
28
electron microscopy
24
hcn4-positive cardiomyocytes
24
sinoatrial node
16
mouse sinoatrial
12
cardiomyocytes
10
nodal cardiomyocytes
8
cardiomyocytes mouse
8
fluorescent immunohistochemistry
8
cardiac conduction
8

Similar Publications

Clinical benefits of central pancreatectomy for a patient with pancreatic schwannoma and diabetes.

World J Surg Oncol

January 2025

Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, China.

Schwannomas are tumors that originate from the glial cells of the nervous system and can occur on myelinated nerve fibers throughout the body, especially in the craniofacial region. However, pancreatic schwannomas are extremely rare. We report a case of a pancreatic schwannoma that was difficult to differentiate from other pancreatic tumors preoperatively.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.

Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Plaques are a hallmark feature of Alzheimer's disease (AD). We found the loss of mucosal-associated invariant T (MAIT) cells and its antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting microglial response and dystrophic neurites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!