Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). Newly developed "correctors" such as lumacaftor (VX-809) that improve CFTR maturation and trafficking and "potentiators" such as ivacaftor (VX-770) that enhance channel activity may provide important advances in CF therapy. Although VX-770 has demonstrated substantial clinical efficacy in the small subset of patients with a mutation (G551D) that affects only channel activity, a single compound is not sufficient to treat patients with the more common CFTR mutation, ΔF508. Thus, patients with ΔF508 will likely require treatment with both correctors and potentiators to achieve clinical benefit. However, whereas the effectiveness of acute treatment with this drug combination has been demonstrated in vitro, the impact of chronic therapy has not been established. In studies of human primary airway epithelial cells, we found that both acute and chronic treatment with VX-770 improved CFTR function in cells with the G551D mutation, consistent with clinical studies. In contrast, chronic VX-770 administration caused a dose-dependent reversal of VX-809-mediated CFTR correction in ΔF508 homozygous cultures. This result reflected the destabilization of corrected ΔF508 CFTR by VX-770, markedly increasing its turnover rate. Chronic VX-770 treatment also reduced mature wild-type CFTR levels and function. These findings demonstrate that chronic treatment with CFTR potentiators and correctors may have unexpected effects that cannot be predicted from short-term studies. Combining these drugs to maximize rescue of ΔF508 CFTR may require changes in dosing and/or development of new potentiator compounds that do not interfere with CFTR stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272825 | PMC |
http://dx.doi.org/10.1126/scitranslmed.3008680 | DOI Listing |
Sci Rep
December 2024
Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
The lungs of people with cystic fibrosis (PwCF) are characterized by recurrent bacterial infections and inflammation. Infections in cystic fibrosis (CF) are left unresolved despite excessive neutrophil infiltration. The role of CFTR in neutrophils is not fully understood.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, 55906; Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN, 55906. Electronic address:
The chloride transporter-channel SLC26A9 is mediated by a reciprocal regulatory mechanism through the interaction between its cytoplasmic STAS domain and the R domain of CFTR. In vertebrate Slc26a9s, the STAS domain structures are interrupted by a disordered loop which is conserved in mammals but is variable in non-mammals. Despite the numerous studies involving the STAS domains in SLC26 proteins, the role of the disordered loop region has not been identified.
View Article and Find Full Text PDFAdv Respir Med
December 2024
Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, 89075 Ulm, Germany.
Elexacaftor/Tezacaftor/Ivacaftor (ETI) is a CFTR modulator therapy approved for people with cystic fibrosis (pwCF) who have at least one phe508del mutation. However, its approval in the European Union (EU) for pwCF with non-phe508del mutations is lacking, because data on treatment response in this subgroup are scarce. This retrospective observational study evaluated six pwCF (ages 6 to 66) with responsive CFTR mutations (M1101K, R347P, 2789+5G>A, G551D) undergoing off-label ETI therapy.
View Article and Find Full Text PDFBiomed Rep
February 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
G protein-coupled estrogen receptor 1 (GPER1) plays a crucial role in the progression of breast cancer and has emerged as a promising therapeutic target. However, while missense mutations in GPER1 have been detected in breast invasive carcinoma (BIC) samples, the resulting molecular, cellular and pharmacological changes remain unclear. The present study categorized BIC samples from The Cancer Genome Atlas database based on mutation information available in the cBioPortal database.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
December 2024
Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan.
In euryhaline teleosts, the cystic fibrosis transmembrane conductance regulator (CFTR) in seawater (SW)-type chloride cells facilitates apical Cl secretion for SW adaptation, while alternative Cl excretion pathways remain understudied. This study investigates the role of the calcium-activated chloride channel, Anoctamin 1 (ANO1), in the gills of the euryhaline Japanese medaka (Oryzias latipes) under hyperosmolality and cortisol (CORT) influence. Acclimation to artificial SW, NaCl, mannitol, or glucose significantly upregulated ANO1 and CFTR mRNA expression in gills, unlike urea treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!