In this study, microwave irradiation was applied to hanging droplets of both water and ethylene glycol. Once the irradiation had ceased and the droplet was allowed to return to its original temperature, it was found that the surface tension of ethylene glycol returned to its original value. In contrast, the water surface tension remained well below its original value for an extended period of time. Similar observations have been reported for magnetically treated water, but this is the first time that such a lasting effect has been reported for microwave irradiation. The effect can be attributed to the unique hydrogen bonds of interfacial water molecules. While the irradiation intensities used in this study are well above those in household devices, there is certainly the potential to apply the methodology to industrial applications where the manipulation of surface tension is required without the use of chemical addition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la5019218 | DOI Listing |
AAPS J
January 2025
Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.
View Article and Find Full Text PDFSurface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.
View Article and Find Full Text PDFSci Rep
January 2025
Petrochemicals Department, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt.
Recovering the remaining oil after primary and secondary extraction methods poses a significant challenge. Enhanced oil recovery (EOR) techniques, which involve injecting fluids into reservoirs, aim to increase recovery rates. Ionic liquids, known for their adaptability, are emerging as promising agents in EOR, improving oil displacement by reshaping fluid properties and interacting with reservoir rocks.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea (the Republic of).
This paper describes the tailless control system design of a flapping-wing micro air vehicle in a four-winged configuration, which can provide high control authority to be stable and agile in flight conditions from hovering to maneuvering flights. The tailless control system consists of variable flapping frequency and wing twist modulation. The variable flapping frequency creates rolling moments through differential vertical force from flapping mechanisms that can be independently driven on the left and right sides.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!